Given an array A
of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L
and M
. (For clarification, the L
-length subarray could occur before or after the M
-length subarray.)
Formally, return the largest V
for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, or0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
Example 1:
Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output: 20
Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
Note:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
這道題給了一個非負數組A,還有兩個長度L和M,說是要分別找出不重疊且長度分別為L和M的兩個子數組,前后順序無所謂,問兩個子數組最大的數字之和是多少。博主最開始想的方法是用動態規划 Dynamic Programming 和滑動窗口 Sliding Window 來做,用兩個 dp 數組,其中 front[i] 表示范圍 [0, i] 之間的長度為M的子數組的最大數字之和,back[i] 表示范圍 [i, n-1] 之間的長度為M的子數組的最大數字之和。然后再次遍歷數組,維護一個長度為L的滑動數組,當數組長度正好為L的時候,當前窗口的數字之和加上左邊的 front[left-1],或者加上右邊的 back[i+1],取二者中的較大值來更新結果 res,這種解法可以通過 OJ,但是行數比較多,且用了三個 for 循環,這里就不貼了。來看論壇上的高分解法吧,首先建立累加和數組,這里可以直接覆蓋A數組,然后定義 Lmax 為在最后M個數字之前的長度為L的子數組的最大數字之和,同理,Mmax 表示在最后L個數字之前的長度為M的子數組的最大數字之和。結果 res 初始化為前 L+M 個數字之和,然后遍歷數組,從 L+M 開始遍歷,先更新 Lmax 和 Mmax,其中 Lmax 用 A[i - M] - A[i - M - L]
來更新,Mmax 用 A[i - L] - A[i - M - L]
來更新。然后取 Lmax + A[i] - A[i - M]
和 Mmax + A[i] - A[i - L]
之間的較大值來更新結果 res 即可,參見代碼如下:
class Solution {
public:
int maxSumTwoNoOverlap(vector<int>& A, int L, int M) {
for (int i = 1; i < A.size(); ++i) {
A[i] += A[i - 1];
}
int res = A[L + M - 1], Lmax = A[L - 1], Mmax = A[M - 1];
for (int i = L + M; i < A.size(); ++i) {
Lmax = max(Lmax, A[i - M] - A[i - M - L]);
Mmax = max(Mmax, A[i - L] - A[i - M - L]);
res = max(res, max(Lmax + A[i] - A[i - M], Mmax + A[i] - A[i - L]));
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/1031
參考資料:
https://leetcode.com/problems/maximum-sum-of-two-non-overlapping-subarrays/