Flink中的雙流join和維表join


一、雙流join

在數據庫中的靜態表上做OLAP分析時,兩表join是非常常見的操作。同理,在流式處理作業中,有時也需要在兩條流上做join以獲得更豐富的信息。

1、Tumbling Window Join 

代碼示例:

DataStream<Integer> orangeStream = ...
DataStream<Integer> greenStream = ...

orangeStream.join(greenStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(TumblingEventTimeWindows.of(Time.milliseconds(2)))
    .apply(new JoinFunction<Integer, Integer, String> (){
        @Override
        public String join(Integer first, Integer second) {
            return first + "," + second;
        }
    });

2、Sliding Window Join

 示例代碼:

DataStream<Integer> orangeStream = ...
DataStream<Integer> greenStream = ...

orangeStream.join(greenStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(SlidingEventTimeWindows.of(Time.milliseconds(2) /* size */, Time.milliseconds(1) /* slide */))
    .apply(new JoinFunction<Integer, Integer, String> (){
        @Override
        public String join(Integer first, Integer second) {
            return first + "," + second;
        }
    });

3、Session Window Join

 示例代碼:

DataStream<Integer> orangeStream = ...
DataStream<Integer> greenStream = ...

orangeStream.join(greenStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(EventTimeSessionWindows.withGap(Time.milliseconds(1)))
    .apply(new JoinFunction<Integer, Integer, String> (){
        @Override
        public String join(Integer first, Integer second) {
            return first + "," + second;
        }
    });

以上3種都是“inner join”,只是窗口類型不一樣。

4、Interval Join

右流相對左流偏移的時間區間進行關聯,即:

right.timestamp ∈ [left.timestamp + lowerBound; left.timestamp + upperBound]

In the example above, we join two streams ‘orange’ and ‘green’ with a lower bound of -2 milliseconds and an upper bound of +1 millisecond. Be default, these boundaries are inclusive, but .lowerBoundExclusive() and .upperBoundExclusive can be applied to change the behaviour.

Using the more formal notation again this will translate to

orangeElem.ts + lowerBound <= greenElem.ts <= orangeElem.ts + upperBound

注意:目前 interval join 只支持 Event time

示例代碼:

DataStream<Integer> orangeStream = ...
DataStream<Integer> greenStream = ...

orangeStream
    .keyBy(<KeySelector>)
    .intervalJoin(greenStream.keyBy(<KeySelector>))
    .between(Time.milliseconds(-2), Time.milliseconds(1))
    .process(new ProcessJoinFunction<Integer, Integer, String(){
        @Override
        public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {
            out.collect(first + "," + second);
        }
    });

5、coGroup

只有inner join肯定還不夠,如何實現left/right outer join呢?答案就是利用coGroup()算子。它的調用方式類似於join()算子,也需要開窗,但是CoGroupFunction比JoinFunction更加靈活,可以按照用戶指定的邏輯匹配左流和/或右流的數據並輸出。

以下的例子就實現了點擊流left join訂單流的功能,是很朴素的nested loop join思想(二重循環)。

clickRecordStream
  .coGroup(orderRecordStream)
  .where(record -> record.getMerchandiseId())
  .equalTo(record -> record.getMerchandiseId())
  .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
  .apply(new CoGroupFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, Tuple2<String, Long>>() {
    @Override
    public void coGroup(Iterable<AnalyticsAccessLogRecord> accessRecords, Iterable<OrderDoneLogRecord> orderRecords, 
Collector<Tuple2<String, Long>> collector) throws Exception { for (AnalyticsAccessLogRecord accessRecord : accessRecords) { boolean isMatched = false; for (OrderDoneLogRecord orderRecord : orderRecords) { // 右流中有對應的記錄 collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), orderRecord.getPrice())); isMatched = true; } if (!isMatched) { // 右流中沒有對應的記錄 collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), null)); } } } }) .print().setParallelism(1);

二、維表join

1、 預加載維表

通過定義一個類實現RichMapFunction,在open()中讀取維表數據加載到內存中,在probe流map()方法中與維表數據進行關聯。

RichMapFunction中open方法里加載維表數據到內存的方式特點如下:

  • 優點:實現簡單
  • 缺點:因為數據存於內存,所以只適合小數據量並且維表數據更新頻率不高的情況下。雖然可以在open中定義一個定時器定時更新維表,但是還是存在維表更新不及時的情況。
class MapJoinDemo1 extends RichMapFunction<Tuple2<String, Integer>, Tuple3<String, Integer, String>> {
        //定義一個變量,用於保存維表數據在內存
        Map<Integer, String> dim;

        @Override
        public void open(Configuration parameters) throws Exception {
            //在open方法中讀取維表數據,可以從數據中讀取、文件中讀取、接口中讀取等等。
            dim = new HashMap<>();
            dim.put(1001, "beijing");
            dim.put(1002, "shanghai");
            dim.put(1003, "wuhan");
            dim.put(1004, "changsha");
        }

        @Override
        public Tuple3<String, Integer, String> map(Tuple2<String, Integer> value) throws Exception {
            //在map方法中進行主流和維表的關聯
            String cityName = "";
            if (dim.containsKey(value.f1)) {
                cityName = dim.get(value.f1);
            }
            return new Tuple3<>(value.f0, value.f1, cityName);
        }
    }
}

2、 熱存儲維表

這種方式是將維表數據存儲在Redis、HBase、MySQL等外部存儲中,實時流在關聯維表數據的時候實時去外部存儲中查詢,這種方式特點如下:

  • 優點:維度數據量不受內存限制,可以存儲很大的數據量。
  • 缺點:因為維表數據在外部存儲中,讀取速度受制於外部存儲的讀取速度;另外維表的同步也有延遲。

(1) 使用cache來減輕訪問壓力

可以使用緩存來存儲一部分常訪問的維表數據,以減少訪問外部系統的次數,比如使用guava Cache。

class MapJoinDemo1 extends RichMapFunction<Tuple2<String, Integer>, Tuple3<String, Integer, String>> {
        LoadingCache<Integer, String> dim;

        @Override
        public void open(Configuration parameters) throws Exception {
            //使用google LoadingCache來進行緩存
            dim = CacheBuilder.newBuilder()
                    //最多緩存個數,超過了就根據最近最少使用算法來移除緩存
                    .maximumSize(1000)
                    //在更新后的指定時間后就回收
                    .expireAfterWrite(10, TimeUnit.MINUTES)
                    //指定移除通知
                    .removalListener(new RemovalListener<Integer, String>() {
                        @Override
                        public void onRemoval(RemovalNotification<Integer, String> removalNotification) {
                            System.out.println(removalNotification.getKey() + "被移除了,值為:" + removalNotification.getValue());
                        }
                    })
                    .build(
                            //指定加載緩存的邏輯
                            new CacheLoader<Integer, String>() {
                                @Override
                                public String load(Integer cityId) throws Exception {
                                    String cityName = readFromHbase(cityId);
                                    return cityName;
                                }
                            }
                    );
        }

        private String readFromHbase(Integer cityId) {
            //讀取hbase,模擬從hbase讀取數據
            Map<Integer, String> temp = new HashMap<>();
            temp.put(1001, "beijing");
            temp.put(1002, "shanghai");
            temp.put(1003, "wuhan");
            temp.put(1004, "changsha");
            String cityName = "";
            if (temp.containsKey(cityId)) {
                cityName = temp.get(cityId);
            }
            return cityName;
        }

        @Override
        public Tuple3<String, Integer, String> map(Tuple2<String, Integer> value) throws Exception {
            //在map方法中進行主流和維表的關聯
            String cityName = "";
            if (dim.get(value.f1) != null) {
                cityName = dim.get(value.f1);
            }
            return new Tuple3<>(value.f0, value.f1, cityName);
        }
    }
}

(2) 使用異步IO來提高訪問吞吐量

Flink與外部存儲系統進行讀寫操作的時候可以使用同步方式,也就是發送一個請求后等待外部系統響應,然后再發送第二個讀寫請求,這樣的方式吞吐量比較低,可以用提高並行度的方式來提高吞吐量,但是並行度多了也就導致了進程數量多了,占用了大量的資源。

Flink中可以使用異步IO來讀寫外部系統,這要求外部系統客戶端支持異步IO,不過目前很多系統都支持異步IO客戶端。但是如果使用異步就要涉及到三個問題:

  • 超時:如果查詢超時那么就認為是讀寫失敗,需要按失敗處理;
  • 並發數量:如果並發數量太多,就要觸發Flink的反壓機制來抑制上游的寫入。
  • 返回順序錯亂:順序錯亂了要根據實際情況來處理,Flink支持兩種方式:允許亂序、保證順序。
public class JoinDemo3 {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<Tuple2<String, Integer>> textStream = env.socketTextStream("localhost", 9000, "\n")
                .map(p -> {
                    //輸入格式為:user,1000,分別是用戶名稱和城市編號
                    String[] list = p.split(",");
                    return new Tuple2<String, Integer>(list[0], Integer.valueOf(list[1]));
                })
                .returns(new TypeHint<Tuple2<String, Integer>>() {
                });


        DataStream<Tuple3<String,Integer, String>> orderedResult = AsyncDataStream
                //保證順序:異步返回的結果保證順序,超時時間1秒,最大容量2,超出容量觸發反壓
                .orderedWait(textStream, new JoinDemo3AyncFunction(), 1000L, TimeUnit.MILLISECONDS, 2)
                .setParallelism(1);

        DataStream<Tuple3<String,Integer, String>> unorderedResult = AsyncDataStream
                //允許亂序:異步返回的結果允許亂序,超時時間1秒,最大容量2,超出容量觸發反壓
                .unorderedWait(textStream, new JoinDemo3AyncFunction(), 1000L, TimeUnit.MILLISECONDS, 2)
                .setParallelism(1);

        orderedResult.print();
        unorderedResult.print();
        env.execute("joinDemo");
    }

    //定義個類,繼承RichAsyncFunction,實現異步查詢存儲在mysql里的維表
    //輸入用戶名、城市ID,返回 Tuple3<用戶名、城市ID,城市名稱>
    static class JoinDemo3AyncFunction extends RichAsyncFunction<Tuple2<String, Integer>, Tuple3<String, Integer, String>> {
        // 鏈接
        private static String jdbcUrl = "jdbc:mysql://192.168.145.1:3306?useSSL=false";
        private static String username = "root";
        private static String password = "123";
        private static String driverName = "com.mysql.jdbc.Driver";
        java.sql.Connection conn;
        PreparedStatement ps;

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);

            Class.forName(driverName);
            conn = DriverManager.getConnection(jdbcUrl, username, password);
            ps = conn.prepareStatement("select city_name from tmp.city_info where id = ?");
        }

        @Override
        public void close() throws Exception {
            super.close();
            conn.close();
        }

        //異步查詢方法
        @Override
        public void asyncInvoke(Tuple2<String, Integer> input, ResultFuture<Tuple3<String,Integer, String>> resultFuture) throws Exception {
            // 使用 city id 查詢
            ps.setInt(1, input.f1);
            ResultSet rs = ps.executeQuery();
            String cityName = null;
            if (rs.next()) {
                cityName = rs.getString(1);
            }
            List list = new ArrayList<Tuple2<Integer, String>>();
            list.add(new Tuple3<>(input.f0,input.f1, cityName));
            resultFuture.complete(list);
        }

        //超時處理
        @Override
        public void timeout(Tuple2<String, Integer> input, ResultFuture<Tuple3<String,Integer, String>> resultFuture) throws Exception {
            List list = new ArrayList<Tuple2<Integer, String>>();
            list.add(new Tuple3<>(input.f0,input.f1, ""));
            resultFuture.complete(list);
        }
    }
}

3、 廣播維表

利用Flink的Broadcast State將維度數據流廣播到下游做join操作。特點如下:

  • 優點:維度數據變更后可以即時更新到結果中。
  • 缺點:數據保存在內存中,支持的維度數據量比較小。
        //定義城市流
        DataStream<Tuple2<Integer, String>> cityStream = env.socketTextStream("localhost", 9001, "\n")
                .map(p -> {
                    //輸入格式為:城市ID,城市名稱
                    String[] list = p.split(",");
                    return new Tuple2<Integer, String>(Integer.valueOf(list[0]), list[1]);
                })
                .returns(new TypeHint<Tuple2<Integer, String>>() {
                });

        //將城市流定義為廣播流
        final MapStateDescriptor<Integer, String> broadcastDesc = new MapStateDescriptor("broad1", Integer.class, String.class);
        BroadcastStream<Tuple2<Integer, String>> broadcastStream = cityStream.broadcast(broadcastDesc);

        DataStream result = textStream.connect(broadcastStream)
                .process(new BroadcastProcessFunction<Tuple2<String, Integer>, Tuple2<Integer, String>, Tuple3<String, Integer, String>>() {
                    //處理非廣播流,關聯維度
                    @Override
                    public void processElement(Tuple2<String, Integer> value, ReadOnlyContext ctx, Collector<Tuple3<String, Integer, String>> out) throws Exception {
                        ReadOnlyBroadcastState<Integer, String> state = ctx.getBroadcastState(broadcastDesc);
                        String cityName = "";
                        if (state.contains(value.f1)) {
                            cityName = state.get(value.f1);
                        }
                        out.collect(new Tuple3<>(value.f0, value.f1, cityName));
                    }

                    @Override
                    public void processBroadcastElement(Tuple2<Integer, String> value, Context ctx, Collector<Tuple3<String, Integer, String>> out) throws Exception {
                        System.out.println("收到廣播數據:" + value);
                        ctx.getBroadcastState(broadcastDesc).put(value.f0, value.f1);
                    }
                });

4、 Temporal table function join

Temporal table是持續變化表上某一時刻的視圖,Temporal table function是一個表函數,傳遞一個時間參數,返回Temporal table這一指定時刻的視圖。

可以將維度數據流映射為Temporal table,主流與這個Temporal table進行關聯,可以關聯到某一個版本(歷史上某一個時刻)的維度數據。

Temporal table function join的特點如下:

  • 優點:維度數據量可以很大,維度數據更新及時,不依賴外部存儲,可以關聯不同版本的維度數據。
  • 缺點:只支持在Flink SQL API中使用。
public class JoinDemo5 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, bsSettings);

        //定義主流
        DataStream<Tuple2<String, Integer>> textStream = env.socketTextStream("localhost", 9000, "\n")
                .map(p -> {
                    //輸入格式為:user,1000,分別是用戶名稱和城市編號
                    String[] list = p.split(",");
                    return new Tuple2<String, Integer>(list[0], Integer.valueOf(list[1]));
                })
                .returns(new TypeHint<Tuple2<String, Integer>>() {
                });

        //定義城市流
        DataStream<Tuple2<Integer, String>> cityStream = env.socketTextStream("localhost", 9001, "\n")
                .map(p -> {
                    //輸入格式為:城市ID,城市名稱
                    String[] list = p.split(",");
                    return new Tuple2<Integer, String>(Integer.valueOf(list[0]), list[1]);
                })
                .returns(new TypeHint<Tuple2<Integer, String>>() {
                });

        //轉變為Table
        Table userTable = tableEnv.fromDataStream(textStream, "user_name,city_id,ps.proctime");
        Table cityTable = tableEnv.fromDataStream(cityStream, "city_id,city_name,ps.proctime");

        //定義一個TemporalTableFunction
        TemporalTableFunction dimCity = cityTable.createTemporalTableFunction("ps", "city_id");
        //注冊表函數
        tableEnv.registerFunction("dimCity", dimCity);

        //關聯查詢
        Table result = tableEnv
                .sqlQuery("select u.user_name,u.city_id,d.city_name from " + userTable + " as u " +
                        ", Lateral table (dimCity(u.ps)) d " +
                        "where u.city_id=d.city_id");
        
        //打印輸出
        DataStream resultDs = tableEnv.toAppendStream(result, Row.class);
        resultDs.print();
        env.execute("joinDemo");
    }
}

5、四種維表關聯方式比較

 

 

參考:

https://www.jianshu.com/p/45ec888332df

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/joining.html

https://blog.csdn.net/chybin500/article/details/106482620

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM