OpenCV 圖像拼接和圖像融合技術


圖像拼接在實際的應用場景很廣,比如無人機航拍,遙感圖像等等,圖像拼接是進一步做圖像理解基礎步驟,拼接效果的好壞直接影響接下來的工作,所以一個好的圖像拼接算法非常重要。

再舉一個身邊的例子吧,你用你的手機對某一場景拍照,但是你沒有辦法一次將所有你要拍的景物全部拍下來,所以你對該場景從左往右依次拍了好幾張圖,來把你要拍的所有景物記錄下來。那么我們能不能把這些圖像拼接成一個大圖呢?我們利用opencv就可以做到圖像拼接的效果!

比如我們有對這兩張圖進行拼接。

從上面兩張圖可以看出,這兩張圖有比較多的重疊部分,這也是拼接的基本要求。

那么要實現圖像拼接需要那幾步呢?簡單來說有以下幾步:

  1. 對每幅圖進行特征點提取
  2. 對對特征點進行匹配
  3. 進行圖像配准
  4. 把圖像拷貝到另一幅圖像的特定位置
  5. 對重疊邊界進行特殊處理

好吧,那就開始正式實現圖像配准。

第一步就是特征點提取。現在CV領域有很多特征點的定義,比如sift、surf、harris角點、ORB都是很有名的特征因子,都可以用來做圖像拼接的工作,他們各有優勢。本文將使用ORB和SURF進行圖像拼接,用其他方法進行拼接也是類似的。

基於SURF的圖像拼接

用SIFT算法來實現圖像拼接是很常用的方法,但是因為SIFT計算量很大,所以在速度要求很高的場合下不再適用。所以,它的改進方法SURF因為在速度方面有了明顯的提高(速度是SIFT的3倍),所以在圖像拼接領域還是大有作為。雖說SURF精確度和穩定性不及SIFT,但是其綜合能力還是優越一些。下面將詳細介紹拼接的主要步驟。

1.特征點提取和匹配

 1 //提取特征點 
 2 SurfFeatureDetector Detector(2000);  3 vector<KeyPoint> keyPoint1, keyPoint2;  4 Detector.detect(image1, keyPoint1);  5 Detector.detect(image2, keyPoint2);  6 
 7 //特征點描述,為下邊的特征點匹配做准備 
 8 SurfDescriptorExtractor Descriptor;  9 Mat imageDesc1, imageDesc2; 10 Descriptor.compute(image1, keyPoint1, imageDesc1); 11 Descriptor.compute(image2, keyPoint2, imageDesc2); 12 
13 FlannBasedMatcher matcher; 14 vector<vector<DMatch> > matchePoints; 15 vector<DMatch> GoodMatchePoints; 16 
17 vector<Mat> train_desc(1, imageDesc1); 18 matcher.add(train_desc); 19 matcher.train(); 20 
21 matcher.knnMatch(imageDesc2, matchePoints, 2); 22 cout << "total match points: " << matchePoints.size() << endl; 23 
24 // Lowe's algorithm,獲取優秀匹配點
25 for (int i = 0; i < matchePoints.size(); i++) 26 { 27     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 28  { 29         GoodMatchePoints.push_back(matchePoints[i][0]); 30  } 31 } 32 
33 Mat first_match; 34 drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); 35 imshow("first_match ", first_match);

2.圖像配准

這樣子我們就可以得到了兩幅待拼接圖的匹配點集,接下來我們進行圖像的配准,即將兩張圖像轉換為同一坐標下,這里我們需要使用findHomography函數來求得變換矩陣。但是需要注意的是,findHomography函數所要用到的點集是Point2f類型的,所有我們需要對我們剛得到的點集GoodMatchePoints再做一次處理,使其轉換為Point2f類型的點集。

1 vector<Point2f> imagePoints1, imagePoints2; 2 
3 for (int i = 0; i<GoodMatchePoints.size(); i++) 4 { 5  imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); 6  imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); 7 }

這樣子,我們就可以拿着imagePoints1, imagePoints2去求變換矩陣了,並且實現圖像配准。值得注意的是findHomography函數的參數中我們選澤了CV_RANSAC,這表明我們選擇RANSAC算法繼續篩選可靠地匹配點,這使得匹配點解更為精確。

 1 //獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 
 2 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);  3 ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差 
 4 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); 
 5 cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣  6 
 7 //圖像配准 
 8 Mat imageTransform1, imageTransform2;  9 warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); 10 //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
11 imshow("直接經過透視矩陣變換", imageTransform1); 12 imwrite("trans1.jpg", imageTransform1);

3. 圖像拷貝

拷貝的思路很簡單,就是將左圖直接拷貝到配准圖上就可以了。

 1 //創建拼接后的圖,需提前計算圖的大小
 2 int dst_width = imageTransform1.cols;  //取最右點的長度為拼接圖的長度
 3 int dst_height = image02.rows;  4 
 5 Mat dst(dst_height, dst_width, CV_8UC3);  6 dst.setTo(0);  7 
 8 imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));  9 image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); 10 
11 imshow("b_dst", dst);

4.圖像融合(去裂縫處理)

從上圖可以看出,兩圖的拼接並不自然,原因就在於拼接圖的交界處,兩圖因為光照色澤的原因使得兩圖交界處的過渡很糟糕,所以需要特定的處理解決這種不自然。這里的處理思路是加權融合,在重疊部分由前一幅圖像慢慢過渡到第二幅圖像,即將圖像的重疊區域的像素值按一定的權值相加合成新的圖像。

 1 //優化兩圖的連接處,使得拼接自然
 2 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)  3 {  4     int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界 
 5 
 6     double processWidth = img1.cols - start;//重疊區域的寬度 
 7     int rows = dst.rows;  8     int cols = img1.cols; //注意,是列數*通道數
 9     double alpha = 1;//img1中像素的權重 
10     for (int i = 0; i < rows; i++) 11  { 12         uchar* p = img1.ptr<uchar>(i);  //獲取第i行的首地址
13         uchar* t = trans.ptr<uchar>(i); 14         uchar* d = dst.ptr<uchar>(i); 15         for (int j = start; j < cols; j++) 16  { 17             //如果遇到圖像trans中無像素的黑點,則完全拷貝img1中的數據
18             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) 19  { 20                 alpha = 1; 21  } 22             else
23  { 24                 //img1中像素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好 
25                 alpha = (processWidth - (j - start)) / processWidth; 26  } 27 
28             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); 29             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); 30             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); 31 
32  } 33  } 34 }

多嘗試幾張,驗證拼接效果

測試一

測試二

測試三

最后給出完整的SURF算法實現的拼接代碼。

 1 #include "highgui/highgui.hpp"    
 2 #include "opencv2/nonfree/nonfree.hpp"    
 3 #include "opencv2/legacy/legacy.hpp"   
 4 #include <iostream>  
 5 
 6 using namespace cv;  7 using namespace std;  8 
 9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);  10 
 11 typedef struct
 12 {  13  Point2f left_top;  14  Point2f left_bottom;  15  Point2f right_top;  16  Point2f right_bottom;  17 }four_corners_t;  18 
 19 four_corners_t corners;  20 
 21 void CalcCorners(const Mat& H, const Mat& src)  22 {  23     double v2[] = { 0, 0, 1 };//左上角
 24     double v1[3];//變換后的坐標值
 25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 27 
 28     V1 = H * V2;  29     //左上角(0,0,1)
 30     cout << "V2: " << V2 << endl;  31     cout << "V1: " << V1 << endl;  32     corners.left_top.x = v1[0] / v1[2];  33     corners.left_top.y = v1[1] / v1[2];  34 
 35     //左下角(0,src.rows,1)
 36     v2[0] = 0;  37     v2[1] = src.rows;  38     v2[2] = 1;  39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 41     V1 = H * V2;  42     corners.left_bottom.x = v1[0] / v1[2];  43     corners.left_bottom.y = v1[1] / v1[2];  44 
 45     //右上角(src.cols,0,1)
 46     v2[0] = src.cols;  47     v2[1] = 0;  48     v2[2] = 1;  49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 51     V1 = H * V2;  52     corners.right_top.x = v1[0] / v1[2];  53     corners.right_top.y = v1[1] / v1[2];  54 
 55     //右下角(src.cols,src.rows,1)
 56     v2[0] = src.cols;  57     v2[1] = src.rows;  58     v2[2] = 1;  59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 61     V1 = H * V2;  62     corners.right_bottom.x = v1[0] / v1[2];  63     corners.right_bottom.y = v1[1] / v1[2];  64 
 65 }  66 
 67 int main(int argc, char *argv[])  68 {  69     Mat image01 = imread("g5.jpg", 1);    //右圖
 70     Mat image02 = imread("g4.jpg", 1);    //左圖
 71     imshow("p2", image01);  72     imshow("p1", image02);  73 
 74     //灰度圖轉換 
 75  Mat image1, image2;  76  cvtColor(image01, image1, CV_RGB2GRAY);  77  cvtColor(image02, image2, CV_RGB2GRAY);  78 
 79 
 80     //提取特征點 
 81     SurfFeatureDetector Detector(2000);  82     vector<KeyPoint> keyPoint1, keyPoint2;  83  Detector.detect(image1, keyPoint1);  84  Detector.detect(image2, keyPoint2);  85 
 86     //特征點描述,為下邊的特征點匹配做准備 
 87  SurfDescriptorExtractor Descriptor;  88  Mat imageDesc1, imageDesc2;  89  Descriptor.compute(image1, keyPoint1, imageDesc1);  90  Descriptor.compute(image2, keyPoint2, imageDesc2);  91 
 92  FlannBasedMatcher matcher;  93     vector<vector<DMatch> > matchePoints;  94     vector<DMatch> GoodMatchePoints;  95 
 96     vector<Mat> train_desc(1, imageDesc1);  97  matcher.add(train_desc);  98  matcher.train();  99 
100     matcher.knnMatch(imageDesc2, matchePoints, 2); 101     cout << "total match points: " << matchePoints.size() << endl; 102 
103     // Lowe's algorithm,獲取優秀匹配點
104     for (int i = 0; i < matchePoints.size(); i++) 105  { 106         if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 107  { 108             GoodMatchePoints.push_back(matchePoints[i][0]); 109  } 110  } 111 
112  Mat first_match; 113  drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); 114     imshow("first_match ", first_match); 115 
116     vector<Point2f> imagePoints1, imagePoints2; 117 
118     for (int i = 0; i<GoodMatchePoints.size(); i++) 119  { 120  imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); 121  imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); 122  } 123 
124 
125 
126     //獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 
127     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); 128     ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差 
129     //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); 
130     cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣 131 
132    //計算配准圖的四個頂點坐標
133  CalcCorners(homo, image01); 134     cout << "left_top:" << corners.left_top << endl; 135     cout << "left_bottom:" << corners.left_bottom << endl; 136     cout << "right_top:" << corners.right_top << endl; 137     cout << "right_bottom:" << corners.right_bottom << endl; 138 
139     //圖像配准 
140  Mat imageTransform1, imageTransform2; 141  warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); 142     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
143     imshow("直接經過透視矩陣變換", imageTransform1); 144     imwrite("trans1.jpg", imageTransform1); 145 
146 
147     //創建拼接后的圖,需提前計算圖的大小
148     int dst_width = imageTransform1.cols;  //取最右點的長度為拼接圖的長度
149     int dst_height = image02.rows; 150 
151  Mat dst(dst_height, dst_width, CV_8UC3); 152     dst.setTo(0); 153 
154     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); 155     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); 156 
157     imshow("b_dst", dst); 158 
159 
160  OptimizeSeam(image02, imageTransform1, dst); 161 
162 
163     imshow("dst", dst); 164     imwrite("dst.jpg", dst); 165 
166  waitKey(); 167 
168     return 0; 169 } 170 
171 
172 //優化兩圖的連接處,使得拼接自然
173 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) 174 { 175     int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界 
176 
177     double processWidth = img1.cols - start;//重疊區域的寬度 
178     int rows = dst.rows; 179     int cols = img1.cols; //注意,是列數*通道數
180     double alpha = 1;//img1中像素的權重 
181     for (int i = 0; i < rows; i++) 182  { 183         uchar* p = img1.ptr<uchar>(i);  //獲取第i行的首地址
184         uchar* t = trans.ptr<uchar>(i); 185         uchar* d = dst.ptr<uchar>(i); 186         for (int j = start; j < cols; j++) 187  { 188             //如果遇到圖像trans中無像素的黑點,則完全拷貝img1中的數據
189             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) 190  { 191                 alpha = 1; 192  } 193             else
194  { 195                 //img1中像素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好 
196                 alpha = (processWidth - (j - start)) / processWidth; 197  } 198 
199             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); 200             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); 201             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); 202 
203  } 204  } 205 }

基於ORB的圖像拼接

利用ORB進行圖像拼接的思路跟上面的思路基本一樣,只是特征提取和特征點匹配的方式略有差異罷了。這里就不再詳細介紹思路了,直接貼代碼看效果。

 1 #include "highgui/highgui.hpp"    
 2 #include "opencv2/nonfree/nonfree.hpp"    
 3 #include "opencv2/legacy/legacy.hpp"   
 4 #include <iostream>  
 5 
 6 using namespace cv;  7 using namespace std;  8 
 9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);  10 
 11 typedef struct
 12 {  13  Point2f left_top;  14  Point2f left_bottom;  15  Point2f right_top;  16  Point2f right_bottom;  17 }four_corners_t;  18 
 19 four_corners_t corners;  20 
 21 void CalcCorners(const Mat& H, const Mat& src)  22 {  23     double v2[] = { 0, 0, 1 };//左上角
 24     double v1[3];//變換后的坐標值
 25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 27 
 28     V1 = H * V2;  29     //左上角(0,0,1)
 30     cout << "V2: " << V2 << endl;  31     cout << "V1: " << V1 << endl;  32     corners.left_top.x = v1[0] / v1[2];  33     corners.left_top.y = v1[1] / v1[2];  34 
 35     //左下角(0,src.rows,1)
 36     v2[0] = 0;  37     v2[1] = src.rows;  38     v2[2] = 1;  39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 41     V1 = H * V2;  42     corners.left_bottom.x = v1[0] / v1[2];  43     corners.left_bottom.y = v1[1] / v1[2];  44 
 45     //右上角(src.cols,0,1)
 46     v2[0] = src.cols;  47     v2[1] = 0;  48     v2[2] = 1;  49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 51     V1 = H * V2;  52     corners.right_top.x = v1[0] / v1[2];  53     corners.right_top.y = v1[1] / v1[2];  54 
 55     //右下角(src.cols,src.rows,1)
 56     v2[0] = src.cols;  57     v2[1] = src.rows;  58     v2[2] = 1;  59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 61     V1 = H * V2;  62     corners.right_bottom.x = v1[0] / v1[2];  63     corners.right_bottom.y = v1[1] / v1[2];  64 
 65 }  66 
 67 int main(int argc, char *argv[])  68 {  69     Mat image01 = imread("t1.jpg", 1);    //右圖
 70     Mat image02 = imread("t2.jpg", 1);    //左圖
 71     imshow("p2", image01);  72     imshow("p1", image02);  73 
 74     //灰度圖轉換 
 75  Mat image1, image2;  76  cvtColor(image01, image1, CV_RGB2GRAY);  77  cvtColor(image02, image2, CV_RGB2GRAY);  78 
 79 
 80     //提取特征點 
 81     OrbFeatureDetector  surfDetector(3000);  82     vector<KeyPoint> keyPoint1, keyPoint2;  83  surfDetector.detect(image1, keyPoint1);  84  surfDetector.detect(image2, keyPoint2);  85 
 86     //特征點描述,為下邊的特征點匹配做准備 
 87  OrbDescriptorExtractor SurfDescriptor;  88  Mat imageDesc1, imageDesc2;  89  SurfDescriptor.compute(image1, keyPoint1, imageDesc1);  90  SurfDescriptor.compute(image2, keyPoint2, imageDesc2);  91 
 92     flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);  93 
 94     vector<DMatch> GoodMatchePoints;  95 
 96     Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1);  97     flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams());  98 
 99     // Lowe's algorithm,獲取優秀匹配點
100     for (int i = 0; i < matchDistance.rows; i++) 101  { 102         if (matchDistance.at<float>(i, 0) < 0.4 * matchDistance.at<float>(i, 1)) 103  { 104             DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0)); 105  GoodMatchePoints.push_back(dmatches); 106  } 107  } 108 
109  Mat first_match; 110  drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); 111     imshow("first_match ", first_match); 112 
113     vector<Point2f> imagePoints1, imagePoints2; 114 
115     for (int i = 0; i<GoodMatchePoints.size(); i++) 116  { 117  imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); 118  imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); 119  } 120 
121 
122 
123     //獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 
124     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); 125     ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差 
126     //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); 
127     cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣 128 
129                                                 //計算配准圖的四個頂點坐標
130  CalcCorners(homo, image01); 131     cout << "left_top:" << corners.left_top << endl; 132     cout << "left_bottom:" << corners.left_bottom << endl; 133     cout << "right_top:" << corners.right_top << endl; 134     cout << "right_bottom:" << corners.right_bottom << endl; 135 
136     //圖像配准 
137  Mat imageTransform1, imageTransform2; 138  warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); 139     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
140     imshow("直接經過透視矩陣變換", imageTransform1); 141     imwrite("trans1.jpg", imageTransform1); 142 
143 
144     //創建拼接后的圖,需提前計算圖的大小
145     int dst_width = imageTransform1.cols;  //取最右點的長度為拼接圖的長度
146     int dst_height = image02.rows; 147 
148  Mat dst(dst_height, dst_width, CV_8UC3); 149     dst.setTo(0); 150 
151     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); 152     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); 153 
154     imshow("b_dst", dst); 155 
156 
157  OptimizeSeam(image02, imageTransform1, dst); 158 
159 
160     imshow("dst", dst); 161     imwrite("dst.jpg", dst); 162 
163  waitKey(); 164 
165     return 0; 166 } 167 
168 
169 //優化兩圖的連接處,使得拼接自然
170 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) 171 { 172     int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界 
173 
174     double processWidth = img1.cols - start;//重疊區域的寬度 
175     int rows = dst.rows; 176     int cols = img1.cols; //注意,是列數*通道數
177     double alpha = 1;//img1中像素的權重 
178     for (int i = 0; i < rows; i++) 179  { 180         uchar* p = img1.ptr<uchar>(i);  //獲取第i行的首地址
181         uchar* t = trans.ptr<uchar>(i); 182         uchar* d = dst.ptr<uchar>(i); 183         for (int j = start; j < cols; j++) 184  { 185             //如果遇到圖像trans中無像素的黑點,則完全拷貝img1中的數據
186             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) 187  { 188                 alpha = 1; 189  } 190             else
191  { 192                 //img1中像素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好 
193                 alpha = (processWidth - (j - start)) / processWidth; 194  } 195 
196             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); 197             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); 198             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); 199 
200  } 201  } 202 }

看一看拼接效果,我覺得還是不錯的。

看一下這一組圖片,這組圖片產生了鬼影,為什么?因為兩幅圖中的人物走動了啊!所以要做圖像拼接,盡量保證使用的是靜態圖片,不要加入一些動態因素干擾拼接。

opencv自帶的拼接算法stitch

opencv其實自己就有實現圖像拼接的算法,當然效果也是相當好的,但是因為其實現很復雜,而且代碼量很龐大,其實在一些小應用下的拼接有點殺雞用牛刀的感覺。最近在閱讀sticth源碼時,發現其中有幾個很有意思的地方。

1.opencv stitch選擇的特征檢測方式

一直很好奇opencv stitch算法到底選用了哪個算法作為其特征檢測方式,是ORB,SIFT還是SURF?讀源碼終於看到答案。

1 #ifdef HAVE_OPENCV_NONFREE 2         stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder()); 3 #else
4         stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder()); 5 #endif

在源碼createDefault函數中(默認設置),第一選擇是SURF,第二選擇才是ORB(沒有NONFREE模塊才選),所以既然大牛們這么選擇,必然是經過綜合考慮的,所以應該SURF算法在圖像拼接有着更優秀的效果。

2.opencv stitch獲取匹配點的方式

以下代碼是opencv stitch源碼中的特征點提取部分,作者使用了兩次特征點提取的思路:先對圖一進行特征點提取和篩選匹配(1->2),再對圖二進行特征點的提取和匹配(2->1),這跟我們平時的一次提取的思路不同,這種二次提取的思路可以保證更多的匹配點被選中,匹配點越多,findHomography求出的變換越准確。這個思路值得借鑒。

 1 matches_info.matches.clear();  2 
 3 Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams();  4 Ptr<flann::SearchParams> searchParams = new flann::SearchParams();  5 
 6 if (features2.descriptors.depth() == CV_8U)  7 {  8     indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);  9     searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); 10 } 11 
12 FlannBasedMatcher matcher(indexParams, searchParams); 13 vector< vector<DMatch> > pair_matches; 14 MatchesSet matches; 15 
16 // Find 1->2 matches
17 matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); 18 for (size_t i = 0; i < pair_matches.size(); ++i) 19 { 20     if (pair_matches[i].size() < 2) 21         continue; 22     const DMatch& m0 = pair_matches[i][0]; 23     const DMatch& m1 = pair_matches[i][1]; 24     if (m0.distance < (1.f - match_conf_) * m1.distance) 25  { 26  matches_info.matches.push_back(m0); 27  matches.insert(make_pair(m0.queryIdx, m0.trainIdx)); 28  } 29 } 30 LOG("\n1->2 matches: " << matches_info.matches.size() << endl); 31 
32 // Find 2->1 matches
33 pair_matches.clear(); 34 matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); 35 for (size_t i = 0; i < pair_matches.size(); ++i) 36 { 37     if (pair_matches[i].size() < 2) 38         continue; 39     const DMatch& m0 = pair_matches[i][0]; 40     const DMatch& m1 = pair_matches[i][1]; 41     if (m0.distance < (1.f - match_conf_) * m1.distance) 42         if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end()) 43  matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); 44 } 45 LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);

這里我仿照opencv源碼二次提取特征點的思路對我原有拼接代碼進行改寫,實驗證明獲取的匹配點確實較一次提取要多。

 1 //提取特征點 
 2 SiftFeatureDetector Detector(1000);  // 海塞矩陣閾值,在這里調整精度,值越大點越少,越精准 
 3 vector<KeyPoint> keyPoint1, keyPoint2;  4 Detector.detect(image1, keyPoint1);  5 Detector.detect(image2, keyPoint2);  6 
 7 //特征點描述,為下邊的特征點匹配做准備 
 8 SiftDescriptorExtractor Descriptor;  9 Mat imageDesc1, imageDesc2; 10 Descriptor.compute(image1, keyPoint1, imageDesc1); 11 Descriptor.compute(image2, keyPoint2, imageDesc2); 12 
13 FlannBasedMatcher matcher; 14 vector<vector<DMatch> > matchePoints; 15 vector<DMatch> GoodMatchePoints; 16 
17 MatchesSet matches; 18 
19 vector<Mat> train_desc(1, imageDesc1); 20 matcher.add(train_desc); 21 matcher.train(); 22 
23 matcher.knnMatch(imageDesc2, matchePoints, 2); 24 
25 // Lowe's algorithm,獲取優秀匹配點
26 for (int i = 0; i < matchePoints.size(); i++) 27 { 28     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 29  { 30         GoodMatchePoints.push_back(matchePoints[i][0]); 31         matches.insert(make_pair(matchePoints[i][0].queryIdx, matchePoints[i][0].trainIdx)); 32  } 33 } 34 cout<<"\n1->2 matches: " << GoodMatchePoints.size() << endl; 35 
36 #if 1
37 
38 FlannBasedMatcher matcher2; 39 matchePoints.clear(); 40 vector<Mat> train_desc2(1, imageDesc2); 41 matcher2.add(train_desc2); 42 matcher2.train(); 43 
44 matcher2.knnMatch(imageDesc1, matchePoints, 2); 45 // Lowe's algorithm,獲取優秀匹配點
46 for (int i = 0; i < matchePoints.size(); i++) 47 { 48     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 49  { 50         if (matches.find(make_pair(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx)) == matches.end()) 51  { 52             GoodMatchePoints.push_back(DMatch(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx, matchePoints[i][0].distance)); 53  } 54         
55  } 56 } 57 cout<<"1->2 & 2->1 matches: " << GoodMatchePoints.size() << endl; 58 #endif

最后再看一下opencv stitch的拼接效果吧~速度雖然比較慢,但是效果還是很好的。

 1 #include <iostream>
 2 #include <opencv2/core/core.hpp>
 3 #include <opencv2/highgui/highgui.hpp>
 4 #include <opencv2/imgproc/imgproc.hpp>
 5 #include <opencv2/stitching/stitcher.hpp>
 6 using namespace std;  7 using namespace cv;  8 bool try_use_gpu = false;  9 vector<Mat> imgs; 10 string result_name = "dst1.jpg"; 11 int main(int argc, char * argv[]) 12 { 13     Mat img1 = imread("34.jpg"); 14     Mat img2 = imread("35.jpg"); 15 
16     imshow("p1", img1); 17     imshow("p2", img2); 18 
19     if (img1.empty() || img2.empty()) 20  { 21         cout << "Can't read image" << endl; 22         return -1; 23  } 24  imgs.push_back(img1); 25  imgs.push_back(img2); 26 
27 
28     Stitcher stitcher = Stitcher::createDefault(try_use_gpu); 29     // 使用stitch函數進行拼接
30  Mat pano; 31     Stitcher::Status status = stitcher.stitch(imgs, pano); 32     if (status != Stitcher::OK) 33  { 34         cout << "Can't stitch images, error code = " << int(status) << endl; 35         return -1; 36  } 37  imwrite(result_name, pano); 38     Mat pano2 = pano.clone(); 39     // 顯示源圖像,和結果圖像
40     imshow("全景圖像", pano); 41     if (waitKey() == 27) 42         return 0; 43 }


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM