OpenCV 图像拼接和图像融合技术


图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。

再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?我们利用opencv就可以做到图像拼接的效果!

比如我们有对这两张图进行拼接。

从上面两张图可以看出,这两张图有比较多的重叠部分,这也是拼接的基本要求。

那么要实现图像拼接需要那几步呢?简单来说有以下几步:

  1. 对每幅图进行特征点提取
  2. 对对特征点进行匹配
  3. 进行图像配准
  4. 把图像拷贝到另一幅图像的特定位置
  5. 对重叠边界进行特殊处理

好吧,那就开始正式实现图像配准。

第一步就是特征点提取。现在CV领域有很多特征点的定义,比如sift、surf、harris角点、ORB都是很有名的特征因子,都可以用来做图像拼接的工作,他们各有优势。本文将使用ORB和SURF进行图像拼接,用其他方法进行拼接也是类似的。

基于SURF的图像拼接

用SIFT算法来实现图像拼接是很常用的方法,但是因为SIFT计算量很大,所以在速度要求很高的场合下不再适用。所以,它的改进方法SURF因为在速度方面有了明显的提高(速度是SIFT的3倍),所以在图像拼接领域还是大有作为。虽说SURF精确度和稳定性不及SIFT,但是其综合能力还是优越一些。下面将详细介绍拼接的主要步骤。

1.特征点提取和匹配

 1 //提取特征点 
 2 SurfFeatureDetector Detector(2000);  3 vector<KeyPoint> keyPoint1, keyPoint2;  4 Detector.detect(image1, keyPoint1);  5 Detector.detect(image2, keyPoint2);  6 
 7 //特征点描述,为下边的特征点匹配做准备 
 8 SurfDescriptorExtractor Descriptor;  9 Mat imageDesc1, imageDesc2; 10 Descriptor.compute(image1, keyPoint1, imageDesc1); 11 Descriptor.compute(image2, keyPoint2, imageDesc2); 12 
13 FlannBasedMatcher matcher; 14 vector<vector<DMatch> > matchePoints; 15 vector<DMatch> GoodMatchePoints; 16 
17 vector<Mat> train_desc(1, imageDesc1); 18 matcher.add(train_desc); 19 matcher.train(); 20 
21 matcher.knnMatch(imageDesc2, matchePoints, 2); 22 cout << "total match points: " << matchePoints.size() << endl; 23 
24 // Lowe's algorithm,获取优秀匹配点
25 for (int i = 0; i < matchePoints.size(); i++) 26 { 27     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 28  { 29         GoodMatchePoints.push_back(matchePoints[i][0]); 30  } 31 } 32 
33 Mat first_match; 34 drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); 35 imshow("first_match ", first_match);

2.图像配准

这样子我们就可以得到了两幅待拼接图的匹配点集,接下来我们进行图像的配准,即将两张图像转换为同一坐标下,这里我们需要使用findHomography函数来求得变换矩阵。但是需要注意的是,findHomography函数所要用到的点集是Point2f类型的,所有我们需要对我们刚得到的点集GoodMatchePoints再做一次处理,使其转换为Point2f类型的点集。

1 vector<Point2f> imagePoints1, imagePoints2; 2 
3 for (int i = 0; i<GoodMatchePoints.size(); i++) 4 { 5  imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); 6  imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); 7 }

这样子,我们就可以拿着imagePoints1, imagePoints2去求变换矩阵了,并且实现图像配准。值得注意的是findHomography函数的参数中我们选泽了CV_RANSAC,这表明我们选择RANSAC算法继续筛选可靠地匹配点,这使得匹配点解更为精确。

 1 //获取图像1到图像2的投影映射矩阵 尺寸为3*3 
 2 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);  3 ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差 
 4 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); 
 5 cout << "变换矩阵为:\n" << homo << endl << endl; //输出映射矩阵  6 
 7 //图像配准 
 8 Mat imageTransform1, imageTransform2;  9 warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); 10 //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
11 imshow("直接经过透视矩阵变换", imageTransform1); 12 imwrite("trans1.jpg", imageTransform1);

3. 图像拷贝

拷贝的思路很简单,就是将左图直接拷贝到配准图上就可以了。

 1 //创建拼接后的图,需提前计算图的大小
 2 int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
 3 int dst_height = image02.rows;  4 
 5 Mat dst(dst_height, dst_width, CV_8UC3);  6 dst.setTo(0);  7 
 8 imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));  9 image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); 10 
11 imshow("b_dst", dst);

4.图像融合(去裂缝处理)

从上图可以看出,两图的拼接并不自然,原因就在于拼接图的交界处,两图因为光照色泽的原因使得两图交界处的过渡很糟糕,所以需要特定的处理解决这种不自然。这里的处理思路是加权融合,在重叠部分由前一幅图像慢慢过渡到第二幅图像,即将图像的重叠区域的像素值按一定的权值相加合成新的图像。

 1 //优化两图的连接处,使得拼接自然
 2 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)  3 {  4     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 
 5 
 6     double processWidth = img1.cols - start;//重叠区域的宽度 
 7     int rows = dst.rows;  8     int cols = img1.cols; //注意,是列数*通道数
 9     double alpha = 1;//img1中像素的权重 
10     for (int i = 0; i < rows; i++) 11  { 12         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
13         uchar* t = trans.ptr<uchar>(i); 14         uchar* d = dst.ptr<uchar>(i); 15         for (int j = start; j < cols; j++) 16  { 17             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
18             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) 19  { 20                 alpha = 1; 21  } 22             else
23  { 24                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 
25                 alpha = (processWidth - (j - start)) / processWidth; 26  } 27 
28             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); 29             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); 30             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); 31 
32  } 33  } 34 }

多尝试几张,验证拼接效果

测试一

测试二

测试三

最后给出完整的SURF算法实现的拼接代码。

 1 #include "highgui/highgui.hpp"    
 2 #include "opencv2/nonfree/nonfree.hpp"    
 3 #include "opencv2/legacy/legacy.hpp"   
 4 #include <iostream>  
 5 
 6 using namespace cv;  7 using namespace std;  8 
 9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);  10 
 11 typedef struct
 12 {  13  Point2f left_top;  14  Point2f left_bottom;  15  Point2f right_top;  16  Point2f right_bottom;  17 }four_corners_t;  18 
 19 four_corners_t corners;  20 
 21 void CalcCorners(const Mat& H, const Mat& src)  22 {  23     double v2[] = { 0, 0, 1 };//左上角
 24     double v1[3];//变换后的坐标值
 25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 27 
 28     V1 = H * V2;  29     //左上角(0,0,1)
 30     cout << "V2: " << V2 << endl;  31     cout << "V1: " << V1 << endl;  32     corners.left_top.x = v1[0] / v1[2];  33     corners.left_top.y = v1[1] / v1[2];  34 
 35     //左下角(0,src.rows,1)
 36     v2[0] = 0;  37     v2[1] = src.rows;  38     v2[2] = 1;  39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 41     V1 = H * V2;  42     corners.left_bottom.x = v1[0] / v1[2];  43     corners.left_bottom.y = v1[1] / v1[2];  44 
 45     //右上角(src.cols,0,1)
 46     v2[0] = src.cols;  47     v2[1] = 0;  48     v2[2] = 1;  49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 51     V1 = H * V2;  52     corners.right_top.x = v1[0] / v1[2];  53     corners.right_top.y = v1[1] / v1[2];  54 
 55     //右下角(src.cols,src.rows,1)
 56     v2[0] = src.cols;  57     v2[1] = src.rows;  58     v2[2] = 1;  59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 61     V1 = H * V2;  62     corners.right_bottom.x = v1[0] / v1[2];  63     corners.right_bottom.y = v1[1] / v1[2];  64 
 65 }  66 
 67 int main(int argc, char *argv[])  68 {  69     Mat image01 = imread("g5.jpg", 1);    //右图
 70     Mat image02 = imread("g4.jpg", 1);    //左图
 71     imshow("p2", image01);  72     imshow("p1", image02);  73 
 74     //灰度图转换 
 75  Mat image1, image2;  76  cvtColor(image01, image1, CV_RGB2GRAY);  77  cvtColor(image02, image2, CV_RGB2GRAY);  78 
 79 
 80     //提取特征点 
 81     SurfFeatureDetector Detector(2000);  82     vector<KeyPoint> keyPoint1, keyPoint2;  83  Detector.detect(image1, keyPoint1);  84  Detector.detect(image2, keyPoint2);  85 
 86     //特征点描述,为下边的特征点匹配做准备 
 87  SurfDescriptorExtractor Descriptor;  88  Mat imageDesc1, imageDesc2;  89  Descriptor.compute(image1, keyPoint1, imageDesc1);  90  Descriptor.compute(image2, keyPoint2, imageDesc2);  91 
 92  FlannBasedMatcher matcher;  93     vector<vector<DMatch> > matchePoints;  94     vector<DMatch> GoodMatchePoints;  95 
 96     vector<Mat> train_desc(1, imageDesc1);  97  matcher.add(train_desc);  98  matcher.train();  99 
100     matcher.knnMatch(imageDesc2, matchePoints, 2); 101     cout << "total match points: " << matchePoints.size() << endl; 102 
103     // Lowe's algorithm,获取优秀匹配点
104     for (int i = 0; i < matchePoints.size(); i++) 105  { 106         if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 107  { 108             GoodMatchePoints.push_back(matchePoints[i][0]); 109  } 110  } 111 
112  Mat first_match; 113  drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); 114     imshow("first_match ", first_match); 115 
116     vector<Point2f> imagePoints1, imagePoints2; 117 
118     for (int i = 0; i<GoodMatchePoints.size(); i++) 119  { 120  imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); 121  imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); 122  } 123 
124 
125 
126     //获取图像1到图像2的投影映射矩阵 尺寸为3*3 
127     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); 128     ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差 
129     //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); 
130     cout << "变换矩阵为:\n" << homo << endl << endl; //输出映射矩阵 131 
132    //计算配准图的四个顶点坐标
133  CalcCorners(homo, image01); 134     cout << "left_top:" << corners.left_top << endl; 135     cout << "left_bottom:" << corners.left_bottom << endl; 136     cout << "right_top:" << corners.right_top << endl; 137     cout << "right_bottom:" << corners.right_bottom << endl; 138 
139     //图像配准 
140  Mat imageTransform1, imageTransform2; 141  warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); 142     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
143     imshow("直接经过透视矩阵变换", imageTransform1); 144     imwrite("trans1.jpg", imageTransform1); 145 
146 
147     //创建拼接后的图,需提前计算图的大小
148     int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
149     int dst_height = image02.rows; 150 
151  Mat dst(dst_height, dst_width, CV_8UC3); 152     dst.setTo(0); 153 
154     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); 155     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); 156 
157     imshow("b_dst", dst); 158 
159 
160  OptimizeSeam(image02, imageTransform1, dst); 161 
162 
163     imshow("dst", dst); 164     imwrite("dst.jpg", dst); 165 
166  waitKey(); 167 
168     return 0; 169 } 170 
171 
172 //优化两图的连接处,使得拼接自然
173 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) 174 { 175     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 
176 
177     double processWidth = img1.cols - start;//重叠区域的宽度 
178     int rows = dst.rows; 179     int cols = img1.cols; //注意,是列数*通道数
180     double alpha = 1;//img1中像素的权重 
181     for (int i = 0; i < rows; i++) 182  { 183         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
184         uchar* t = trans.ptr<uchar>(i); 185         uchar* d = dst.ptr<uchar>(i); 186         for (int j = start; j < cols; j++) 187  { 188             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
189             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) 190  { 191                 alpha = 1; 192  } 193             else
194  { 195                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 
196                 alpha = (processWidth - (j - start)) / processWidth; 197  } 198 
199             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); 200             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); 201             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); 202 
203  } 204  } 205 }

基于ORB的图像拼接

利用ORB进行图像拼接的思路跟上面的思路基本一样,只是特征提取和特征点匹配的方式略有差异罢了。这里就不再详细介绍思路了,直接贴代码看效果。

 1 #include "highgui/highgui.hpp"    
 2 #include "opencv2/nonfree/nonfree.hpp"    
 3 #include "opencv2/legacy/legacy.hpp"   
 4 #include <iostream>  
 5 
 6 using namespace cv;  7 using namespace std;  8 
 9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);  10 
 11 typedef struct
 12 {  13  Point2f left_top;  14  Point2f left_bottom;  15  Point2f right_top;  16  Point2f right_bottom;  17 }four_corners_t;  18 
 19 four_corners_t corners;  20 
 21 void CalcCorners(const Mat& H, const Mat& src)  22 {  23     double v2[] = { 0, 0, 1 };//左上角
 24     double v1[3];//变换后的坐标值
 25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 27 
 28     V1 = H * V2;  29     //左上角(0,0,1)
 30     cout << "V2: " << V2 << endl;  31     cout << "V1: " << V1 << endl;  32     corners.left_top.x = v1[0] / v1[2];  33     corners.left_top.y = v1[1] / v1[2];  34 
 35     //左下角(0,src.rows,1)
 36     v2[0] = 0;  37     v2[1] = src.rows;  38     v2[2] = 1;  39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 41     V1 = H * V2;  42     corners.left_bottom.x = v1[0] / v1[2];  43     corners.left_bottom.y = v1[1] / v1[2];  44 
 45     //右上角(src.cols,0,1)
 46     v2[0] = src.cols;  47     v2[1] = 0;  48     v2[2] = 1;  49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 51     V1 = H * V2;  52     corners.right_top.x = v1[0] / v1[2];  53     corners.right_top.y = v1[1] / v1[2];  54 
 55     //右下角(src.cols,src.rows,1)
 56     v2[0] = src.cols;  57     v2[1] = src.rows;  58     v2[2] = 1;  59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 61     V1 = H * V2;  62     corners.right_bottom.x = v1[0] / v1[2];  63     corners.right_bottom.y = v1[1] / v1[2];  64 
 65 }  66 
 67 int main(int argc, char *argv[])  68 {  69     Mat image01 = imread("t1.jpg", 1);    //右图
 70     Mat image02 = imread("t2.jpg", 1);    //左图
 71     imshow("p2", image01);  72     imshow("p1", image02);  73 
 74     //灰度图转换 
 75  Mat image1, image2;  76  cvtColor(image01, image1, CV_RGB2GRAY);  77  cvtColor(image02, image2, CV_RGB2GRAY);  78 
 79 
 80     //提取特征点 
 81     OrbFeatureDetector  surfDetector(3000);  82     vector<KeyPoint> keyPoint1, keyPoint2;  83  surfDetector.detect(image1, keyPoint1);  84  surfDetector.detect(image2, keyPoint2);  85 
 86     //特征点描述,为下边的特征点匹配做准备 
 87  OrbDescriptorExtractor SurfDescriptor;  88  Mat imageDesc1, imageDesc2;  89  SurfDescriptor.compute(image1, keyPoint1, imageDesc1);  90  SurfDescriptor.compute(image2, keyPoint2, imageDesc2);  91 
 92     flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);  93 
 94     vector<DMatch> GoodMatchePoints;  95 
 96     Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1);  97     flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams());  98 
 99     // Lowe's algorithm,获取优秀匹配点
100     for (int i = 0; i < matchDistance.rows; i++) 101  { 102         if (matchDistance.at<float>(i, 0) < 0.4 * matchDistance.at<float>(i, 1)) 103  { 104             DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0)); 105  GoodMatchePoints.push_back(dmatches); 106  } 107  } 108 
109  Mat first_match; 110  drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); 111     imshow("first_match ", first_match); 112 
113     vector<Point2f> imagePoints1, imagePoints2; 114 
115     for (int i = 0; i<GoodMatchePoints.size(); i++) 116  { 117  imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); 118  imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); 119  } 120 
121 
122 
123     //获取图像1到图像2的投影映射矩阵 尺寸为3*3 
124     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); 125     ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差 
126     //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); 
127     cout << "变换矩阵为:\n" << homo << endl << endl; //输出映射矩阵 128 
129                                                 //计算配准图的四个顶点坐标
130  CalcCorners(homo, image01); 131     cout << "left_top:" << corners.left_top << endl; 132     cout << "left_bottom:" << corners.left_bottom << endl; 133     cout << "right_top:" << corners.right_top << endl; 134     cout << "right_bottom:" << corners.right_bottom << endl; 135 
136     //图像配准 
137  Mat imageTransform1, imageTransform2; 138  warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); 139     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
140     imshow("直接经过透视矩阵变换", imageTransform1); 141     imwrite("trans1.jpg", imageTransform1); 142 
143 
144     //创建拼接后的图,需提前计算图的大小
145     int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
146     int dst_height = image02.rows; 147 
148  Mat dst(dst_height, dst_width, CV_8UC3); 149     dst.setTo(0); 150 
151     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); 152     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); 153 
154     imshow("b_dst", dst); 155 
156 
157  OptimizeSeam(image02, imageTransform1, dst); 158 
159 
160     imshow("dst", dst); 161     imwrite("dst.jpg", dst); 162 
163  waitKey(); 164 
165     return 0; 166 } 167 
168 
169 //优化两图的连接处,使得拼接自然
170 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) 171 { 172     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 
173 
174     double processWidth = img1.cols - start;//重叠区域的宽度 
175     int rows = dst.rows; 176     int cols = img1.cols; //注意,是列数*通道数
177     double alpha = 1;//img1中像素的权重 
178     for (int i = 0; i < rows; i++) 179  { 180         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
181         uchar* t = trans.ptr<uchar>(i); 182         uchar* d = dst.ptr<uchar>(i); 183         for (int j = start; j < cols; j++) 184  { 185             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
186             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) 187  { 188                 alpha = 1; 189  } 190             else
191  { 192                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 
193                 alpha = (processWidth - (j - start)) / processWidth; 194  } 195 
196             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); 197             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); 198             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); 199 
200  } 201  } 202 }

看一看拼接效果,我觉得还是不错的。

看一下这一组图片,这组图片产生了鬼影,为什么?因为两幅图中的人物走动了啊!所以要做图像拼接,尽量保证使用的是静态图片,不要加入一些动态因素干扰拼接。

opencv自带的拼接算法stitch

opencv其实自己就有实现图像拼接的算法,当然效果也是相当好的,但是因为其实现很复杂,而且代码量很庞大,其实在一些小应用下的拼接有点杀鸡用牛刀的感觉。最近在阅读sticth源码时,发现其中有几个很有意思的地方。

1.opencv stitch选择的特征检测方式

一直很好奇opencv stitch算法到底选用了哪个算法作为其特征检测方式,是ORB,SIFT还是SURF?读源码终于看到答案。

1 #ifdef HAVE_OPENCV_NONFREE 2         stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder()); 3 #else
4         stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder()); 5 #endif

在源码createDefault函数中(默认设置),第一选择是SURF,第二选择才是ORB(没有NONFREE模块才选),所以既然大牛们这么选择,必然是经过综合考虑的,所以应该SURF算法在图像拼接有着更优秀的效果。

2.opencv stitch获取匹配点的方式

以下代码是opencv stitch源码中的特征点提取部分,作者使用了两次特征点提取的思路:先对图一进行特征点提取和筛选匹配(1->2),再对图二进行特征点的提取和匹配(2->1),这跟我们平时的一次提取的思路不同,这种二次提取的思路可以保证更多的匹配点被选中,匹配点越多,findHomography求出的变换越准确。这个思路值得借鉴。

 1 matches_info.matches.clear();  2 
 3 Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams();  4 Ptr<flann::SearchParams> searchParams = new flann::SearchParams();  5 
 6 if (features2.descriptors.depth() == CV_8U)  7 {  8     indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);  9     searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); 10 } 11 
12 FlannBasedMatcher matcher(indexParams, searchParams); 13 vector< vector<DMatch> > pair_matches; 14 MatchesSet matches; 15 
16 // Find 1->2 matches
17 matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); 18 for (size_t i = 0; i < pair_matches.size(); ++i) 19 { 20     if (pair_matches[i].size() < 2) 21         continue; 22     const DMatch& m0 = pair_matches[i][0]; 23     const DMatch& m1 = pair_matches[i][1]; 24     if (m0.distance < (1.f - match_conf_) * m1.distance) 25  { 26  matches_info.matches.push_back(m0); 27  matches.insert(make_pair(m0.queryIdx, m0.trainIdx)); 28  } 29 } 30 LOG("\n1->2 matches: " << matches_info.matches.size() << endl); 31 
32 // Find 2->1 matches
33 pair_matches.clear(); 34 matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); 35 for (size_t i = 0; i < pair_matches.size(); ++i) 36 { 37     if (pair_matches[i].size() < 2) 38         continue; 39     const DMatch& m0 = pair_matches[i][0]; 40     const DMatch& m1 = pair_matches[i][1]; 41     if (m0.distance < (1.f - match_conf_) * m1.distance) 42         if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end()) 43  matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); 44 } 45 LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);

这里我仿照opencv源码二次提取特征点的思路对我原有拼接代码进行改写,实验证明获取的匹配点确实较一次提取要多。

 1 //提取特征点 
 2 SiftFeatureDetector Detector(1000);  // 海塞矩阵阈值,在这里调整精度,值越大点越少,越精准 
 3 vector<KeyPoint> keyPoint1, keyPoint2;  4 Detector.detect(image1, keyPoint1);  5 Detector.detect(image2, keyPoint2);  6 
 7 //特征点描述,为下边的特征点匹配做准备 
 8 SiftDescriptorExtractor Descriptor;  9 Mat imageDesc1, imageDesc2; 10 Descriptor.compute(image1, keyPoint1, imageDesc1); 11 Descriptor.compute(image2, keyPoint2, imageDesc2); 12 
13 FlannBasedMatcher matcher; 14 vector<vector<DMatch> > matchePoints; 15 vector<DMatch> GoodMatchePoints; 16 
17 MatchesSet matches; 18 
19 vector<Mat> train_desc(1, imageDesc1); 20 matcher.add(train_desc); 21 matcher.train(); 22 
23 matcher.knnMatch(imageDesc2, matchePoints, 2); 24 
25 // Lowe's algorithm,获取优秀匹配点
26 for (int i = 0; i < matchePoints.size(); i++) 27 { 28     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 29  { 30         GoodMatchePoints.push_back(matchePoints[i][0]); 31         matches.insert(make_pair(matchePoints[i][0].queryIdx, matchePoints[i][0].trainIdx)); 32  } 33 } 34 cout<<"\n1->2 matches: " << GoodMatchePoints.size() << endl; 35 
36 #if 1
37 
38 FlannBasedMatcher matcher2; 39 matchePoints.clear(); 40 vector<Mat> train_desc2(1, imageDesc2); 41 matcher2.add(train_desc2); 42 matcher2.train(); 43 
44 matcher2.knnMatch(imageDesc1, matchePoints, 2); 45 // Lowe's algorithm,获取优秀匹配点
46 for (int i = 0; i < matchePoints.size(); i++) 47 { 48     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) 49  { 50         if (matches.find(make_pair(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx)) == matches.end()) 51  { 52             GoodMatchePoints.push_back(DMatch(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx, matchePoints[i][0].distance)); 53  } 54         
55  } 56 } 57 cout<<"1->2 & 2->1 matches: " << GoodMatchePoints.size() << endl; 58 #endif

最后再看一下opencv stitch的拼接效果吧~速度虽然比较慢,但是效果还是很好的。

 1 #include <iostream>
 2 #include <opencv2/core/core.hpp>
 3 #include <opencv2/highgui/highgui.hpp>
 4 #include <opencv2/imgproc/imgproc.hpp>
 5 #include <opencv2/stitching/stitcher.hpp>
 6 using namespace std;  7 using namespace cv;  8 bool try_use_gpu = false;  9 vector<Mat> imgs; 10 string result_name = "dst1.jpg"; 11 int main(int argc, char * argv[]) 12 { 13     Mat img1 = imread("34.jpg"); 14     Mat img2 = imread("35.jpg"); 15 
16     imshow("p1", img1); 17     imshow("p2", img2); 18 
19     if (img1.empty() || img2.empty()) 20  { 21         cout << "Can't read image" << endl; 22         return -1; 23  } 24  imgs.push_back(img1); 25  imgs.push_back(img2); 26 
27 
28     Stitcher stitcher = Stitcher::createDefault(try_use_gpu); 29     // 使用stitch函数进行拼接
30  Mat pano; 31     Stitcher::Status status = stitcher.stitch(imgs, pano); 32     if (status != Stitcher::OK) 33  { 34         cout << "Can't stitch images, error code = " << int(status) << endl; 35         return -1; 36  } 37  imwrite(result_name, pano); 38     Mat pano2 = pano.clone(); 39     // 显示源图像,和结果图像
40     imshow("全景图像", pano); 41     if (waitKey() == 27) 42         return 0; 43 }


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM