作者有話說
最近學習了一下BP神經網絡,寫篇隨筆記錄一下得到的一些結果和代碼,該隨筆會比較簡略,對一些簡單的細節不加以說明。
目錄
- BP算法簡要推導
- 應用實例
- PYTHON代碼
BP算法簡要推導
該部分用一個$2\times3\times 2\times1$的神經網絡為例簡要說明BP算法的步驟。
- 向前計算輸出
- 反向傳播誤差
- 權重更新
應用實例
鳶尾花數據集一共有150個樣本,分為3個類別,每個樣本有4個特征,(數據集鏈接:http://archive.ics.uci.edu/ml/datasets/Iris)。針對該數據集,選取如下神經網絡結構和激活函數
- 神經網絡組成
- 隱含層神經元個數對准確率的影響
調節隱含層神經元的個數,得到模型分類准確率的變化圖像如下:
- 梯度更新步長對准確率的影響
調節梯度更新步長(學習率)的大小,得到模型分類准確率的變化圖像如下:
可見准確率最高可達98.6666666666667%
PYTHON代碼
BPNeuralNetwork.py
# coding=utf-8
import numpy as np
def tanh(x):
return np.tanh(x)
def tanh_deriv(x):
return 1.0 - np.tanh(x) * np.tanh(x)
def logistic(x):
return 1.0 / (1.0 + np.exp(-x))
def logistic_derivative(x):
return logistic(x) * (1.0 - logistic(x))
class NeuralNetwork:
def __init__(self, layers, activation='tanh'):
"""
"""
if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_deriv
self.weights = []
self.weights.append((2 * np.random.random((layers[0] + 1, layers[1] - 1)) - 1) * 0.25)
for i in range(2, len(layers)):
self.weights.append((2 * np.random.random((layers[i - 1], layers[i])) - 1) * 0.25)
# self.weights.append((2*np.random.random((layers[i]+1,layers[i+1]))-1)*0.25)
def fit(self, X, y, learning_rate=0.2, epochs=10000):
X = np.atleast_2d(X)
# atlest_2d函數:確認X至少二位的矩陣
temp = np.ones([X.shape[0], X.shape[1] + 1])
# 初始化矩陣全是1(行數,列數+1是為了有B這個偏向)
temp[:, 0:-1] = X
# 行全選,第一列到倒數第二列
X = temp
y = np.array(y)
# 數據結構轉換
for k in range(epochs):
# 抽樣梯度下降epochs抽樣
i = np.random.randint(X.shape[0])
a = [X[i]]
# print(self.weights)
for l in range(len(self.weights) - 1):
b = self.activation(np.dot(a[l], self.weights[l]))
b = b.tolist()
b.append(1)
b = np.array(b)
a.append(b)
a.append(self.activation(np.dot(a[-1], self.weights[-1])))
# 向前傳播,得到每個節點的輸出結果
error = y[i] - a[-1]
# 最后一層錯誤率
deltas = [error * self.activation_deriv(a[-1])]
for l in range(len(a) - 2, 0, -1):
deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l]))
deltas.reverse()
for i in range(len(self.weights) - 1):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
delta = delta[:, : -1]
self.weights[i] += learning_rate * layer.T.dot(delta)
layer = np.atleast_2d(a[-2])
delta = np.atleast_2d(deltas[-1])
# print('w=',self.weights[-1])
# print('l=',layer)
# print('d=',delta)
self.weights[-1] += learning_rate * layer.T.dot(delta)
def predict(self, x):
x = np.atleast_2d(x)
# atlest_2d函數:確認X至少二位的矩陣
temp = np.ones(x.shape[1] + 1)
# 初始化矩陣全是1(行數,列數+1是為了有B這個偏向)
temp[:4] = x[0, :]
a = temp
# print(self.weights)
for l in range(len(self.weights) - 1):
b = self.activation(np.dot(a, self.weights[l]))
b = b.tolist()
b.append(1)
b = np.array(b)
a = b
a = self.activation(np.dot(a, self.weights[-1]))
return (a)
Text.py
from BPNeuralNetwork import NeuralNetwork
import numpy as np
from openpyxl import load_workbook
import xlrd
nn = NeuralNetwork([4, 12, 3], 'tanh')
x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
import openpyxl
# 打開excel文件,獲取工作簿對象
data = xlrd.open_workbook('BbezdekIris.xlsx')
table = data.sheets()[0]
nrows = table.nrows # 行數
ncols = table.ncols # 列數
datamatrix = np.zeros((nrows, ncols - 1))
for k in range(ncols - 1):
cols = table.col_values(k)
minVals = min(cols)
maxVals = max(cols)
cols1 = np.matrix(cols) # 把list轉換為矩陣進行矩陣操作
ranges = maxVals - minVals
b = cols1 - minVals
normcols = b / ranges # 數據進行歸一化處理
datamatrix[:, k] = normcols # 把數據進行存儲
# print(datamatrix)
datalabel = table.col_values(ncols - 1)
for i in range(nrows):
if datalabel[i] == 'Iris-setosa':
datalabel[i] = [1, 0, 0]
if datalabel[i] == 'Iris-versicolor':
datalabel[i] = [0, 1, 0]
if datalabel[i] == 'Iris-virginica':
datalabel[i] = [0, 0, 1]
datamatrix1 = table.col_values(0)
for i in range(nrows):
datamatrix1[i] = datamatrix[i]
x = datamatrix1
y = datalabel
nn.fit(x, y)
CategorySet = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
P = np.zeros((1, len(y)))
P = y
a = [0, 1, 3, 5, 4, 7, 8, 1, 5, 1, 5, 5, 1]
print(a.index(max(a)))
b = nn.predict(x[1])
b = b.tolist()
print(b.index(max(b)))
for i in range(len(y)):
Predict = nn.predict(x[i])
Predict = Predict.tolist()
Index = Predict.index(max(Predict, key=abs))
Real = y[i]
Category = Real.index(max(Real, key=abs))
if Index == Category:
P[i] = 1
print('樣本', i + 1, ':', x[i], ' ', '實際類別', ':', CategorySet[Category], ' ', '預測類別', ':', CategorySet[Index],
' ', '預測正確')
else:
P[i] = 0
print('樣本', i + 1, ':', x[i], ' ', '實際類別', ':', CategorySet[Category], ' ', '預測類別', ':', CategorySet[Index],
' ', '預測錯誤')
print('准確率', ':', sum(P) / len(P))