15 鳶尾花(iris)數據集分析


Iris 鳶尾花數據集是一個經典數據集,在統計學習和機器學習領域都經常被用作示例。數據集內包含 3 類共 150 條記錄,每類各 50 個數據,每條記錄都有 4 項特征:花萼長度、花萼寬度、花瓣長度、花瓣寬度,可以通過這4個特征預測鳶尾花卉屬於(iris-setosa, iris-versicolour, iris-virginica)中的哪一品種。

據說在現實中,這三種花的基本判別依據其實是種子(因為花瓣非常容易枯萎)。

0 准備數據

下載數據 http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
下面對 iris 進行探索性分析,首先導入相關包和數據集:

# 導入相關包
import numpy as np
import pandas as pd
from pandas import plotting

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn')

import seaborn as sns
sns.set_style("whitegrid")

from sklearn.linear_model import LogisticRegression 
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn import metrics 
from sklearn.tree import DecisionTreeClassifier

# 導入數據集
iris = pd.read_csv('F:\pydata\dataset\kaggle\iris.csv', usecols=[1, 2, 3, 4, 5])

查看數據集信息:

iris.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
SepalLengthCm    150 non-null float64
SepalWidthCm     150 non-null float64
PetalLengthCm    150 non-null float64
PetalWidthCm     150 non-null float64
Species          150 non-null object
dtypes: float64(4), object(1)
memory usage: 5.9+ KB

查看數據集的頭 5 條記錄:

iris.head()

image

1 探索性分析

先查看數據集各特征列的摘要統計信息:

iris.describe()

image

通過Violinplot 和 Pointplot,分別從數據分布和斜率,觀察各特征與品種之間的關系:

# 設置顏色主題
antV = ['#1890FF', '#2FC25B', '#FACC14', '#223273', '#8543E0', '#13C2C2', '#3436c7', '#F04864'] 

# 繪制  Violinplot
f, axes = plt.subplots(2, 2, figsize=(8, 8), sharex=True)
sns.despine(left=True)

sns.violinplot(x='Species', y='SepalLengthCm', data=iris, palette=antV, ax=axes[0, 0])
sns.violinplot(x='Species', y='SepalWidthCm', data=iris, palette=antV, ax=axes[0, 1])
sns.violinplot(x='Species', y='PetalLengthCm', data=iris, palette=antV, ax=axes[1, 0])
sns.violinplot(x='Species', y='PetalWidthCm', data=iris, palette=antV, ax=axes[1, 1])

plt.show()

image

# 繪制  pointplot
f, axes = plt.subplots(2, 2, figsize=(8, 8), sharex=True)
sns.despine(left=True)

sns.pointplot(x='Species', y='SepalLengthCm', data=iris, color=antV[0], ax=axes[0, 0])
sns.pointplot(x='Species', y='SepalWidthCm', data=iris, color=antV[0], ax=axes[0, 1])
sns.pointplot(x='Species', y='PetalLengthCm', data=iris, color=antV[0], ax=axes[1, 0])
sns.pointplot(x='Species', y='PetalWidthCm', data=iris, color=antV[0], ax=axes[1, 1])

plt.show()

image

生成各特征之間關系的矩陣圖:

g = sns.pairplot(data=iris, palette=antV, hue= 'Species')

image

使用 Andrews Curves 將每個多變量觀測值轉換為曲線並表示傅立葉級數的系數,這對於檢測時間序列數據中的異常值很有用。

Andrews Curves 是一種通過將每個觀察映射到函數來可視化多維數據的方法。

plt.subplots(figsize = (10,8))
plotting.andrews_curves(iris, 'Species', colormap='cool')

plt.show()

image

下面分別基於花萼和花瓣做線性回歸的可視化:

g = sns.lmplot(data=iris, x='SepalWidthCm', y='SepalLengthCm', palette=antV, hue='Species')

image

g = sns.lmplot(data=iris, x='PetalWidthCm', y='PetalLengthCm', palette=antV, hue='Species')

image

最后,通過熱圖找出數據集中不同特征之間的相關性,高正值或負值表明特征具有高度相關性:

fig=plt.gcf()
fig.set_size_inches(12, 8)
fig=sns.heatmap(iris.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', square=True, mask=False, vmin=-1, vmax=1, cbar_kws={"orientation": "vertical"}, cbar=True)

image

從熱圖可看出,花萼的寬度和長度不相關,而花瓣的寬度和長度則高度相關。

2 機器學習

接下來,通過機器學習,以花萼和花瓣的尺寸為根據,預測其品種。

在進行機器學習之前,將數據集拆分為訓練和測試數據集。首先,使用標簽編碼將 3 種鳶尾花的品種名稱轉換為分類值(0, 1, 2)。

# 載入特征和標簽集
X = iris[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
y = iris['Species']

# 對標簽集進行編碼
encoder = LabelEncoder()
y = encoder.fit_transform(y)
print(y)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

接着,將數據集以 7: 3 的比例,拆分為訓練數據和測試數據:

train_X, test_X, train_y, test_y = train_test_split(X, y, test_size = 0.3, random_state = 101)
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)

(105, 4) (105,) (45, 4) (45,)

檢查不同模型的准確性:

# Support Vector Machine
model = svm.SVC()
model.fit(train_X, train_y)
prediction = model.predict(test_X)
print('The accuracy of the SVM is: {0}'.format(metrics.accuracy_score(prediction,test_y)))

The accuracy of the SVM is: 1.0

# Logistic Regression
model = LogisticRegression()
model.fit(train_X, train_y)
prediction = model.predict(test_X)
print('The accuracy of the Logistic Regression is: {0}'.format(metrics.accuracy_score(prediction,test_y)))

The accuracy of the Logistic Regression is: 0.9555555555555556

# Decision Tree
model=DecisionTreeClassifier()
model.fit(train_X, train_y)
prediction = model.predict(test_X)
print('The accuracy of the Decision Tree is: {0}'.format(metrics.accuracy_score(prediction,test_y)))

The accuracy of the Decision Tree is: 0.9555555555555556

# K-Nearest Neighbours
model=KNeighborsClassifier(n_neighbors=3)
model.fit(train_X, train_y)
prediction = model.predict(test_X)
print('The accuracy of the KNN is: {0}'.format(metrics.accuracy_score(prediction,test_y)))

The accuracy of the KNN is: 1.0

上面使用了數據集的所有特征,下面將分別使用花瓣和花萼的尺寸:

petal = iris[['PetalLengthCm', 'PetalWidthCm', 'Species']]
train_p,test_p=train_test_split(petal,test_size=0.3,random_state=0) 
train_x_p=train_p[['PetalWidthCm','PetalLengthCm']]
train_y_p=train_p.Species
test_x_p=test_p[['PetalWidthCm','PetalLengthCm']]
test_y_p=test_p.Species

sepal = iris[['SepalLengthCm', 'SepalWidthCm', 'Species']]
train_s,test_s=train_test_split(sepal,test_size=0.3,random_state=0)
train_x_s=train_s[['SepalWidthCm','SepalLengthCm']]
train_y_s=train_s.Species
test_x_s=test_s[['SepalWidthCm','SepalLengthCm']]
test_y_s=test_s.Species

model=svm.SVC()

model.fit(train_x_p,train_y_p) 
prediction=model.predict(test_x_p) 
print('The accuracy of the SVM using Petals is: {0}'.format(metrics.accuracy_score(prediction,test_y_p)))

model.fit(train_x_s,train_y_s) 
prediction=model.predict(test_x_s) 
print('The accuracy of the SVM using Sepal is: {0}'.format(metrics.accuracy_score(prediction,test_y_s)))

The accuracy of the SVM using Petals is: 0.9777777777777777
The accuracy of the SVM using Sepal is: 0.8

model = LogisticRegression()

model.fit(train_x_p, train_y_p) 
prediction = model.predict(test_x_p) 
print('The accuracy of the Logistic Regression using Petals is: {0}'.format(metrics.accuracy_score(prediction,test_y_p)))

model.fit(train_x_s, train_y_s) 
prediction = model.predict(test_x_s) 
print('The accuracy of the Logistic Regression using Sepals is: {0}'.format(metrics.accuracy_score(prediction,test_y_s)))

The accuracy of the Logistic Regression using Petals is: 0.6888888888888889
The accuracy of the Logistic Regression using Sepals is: 0.6444444444444445

model=DecisionTreeClassifier()

model.fit(train_x_p, train_y_p) 
prediction = model.predict(test_x_p) 
print('The accuracy of the Decision Tree using Petals is: {0}'.format(metrics.accuracy_score(prediction,test_y_p)))

model.fit(train_x_s, train_y_s) 
prediction = model.predict(test_x_s) 
print('The accuracy of the Decision Tree using Sepals is: {0}'.format(metrics.accuracy_score(prediction,test_y_s)))

The accuracy of the Decision Tree using Petals is: 0.9555555555555556
The accuracy of the Decision Tree using Sepals is: 0.6666666666666666

model=KNeighborsClassifier(n_neighbors=3) 

model.fit(train_x_p, train_y_p) 
prediction = model.predict(test_x_p) 
print('The accuracy of the KNN using Petals is: {0}'.format(metrics.accuracy_score(prediction,test_y_p)))

model.fit(train_x_s, train_y_s) 
prediction = model.predict(test_x_s) 
print('The accuracy of the KNN using Sepals is: {0}'.format(metrics.accuracy_score(prediction,test_y_s)))

The accuracy of the KNN using Petals is: 0.9777777777777777
The accuracy of the KNN using Sepals is: 0.7333333333333333

從中不難看出,使用花瓣的尺寸來訓練數據較花萼更准確。正如在探索性分析的熱圖中所看到的那樣,花萼的寬度和長度之間的相關性非常低,而花瓣的寬度和長度之間的相關性非常高。

轉自 https://www.jianshu.com/p/52b86c774b0b


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM