前言:最近接觸到一些神經網絡的東西,看到很多人使用PSO(粒子群優化算法)優化BP神經網絡中的權值和偏置,經過一段時間的研究,寫了一些代碼,能夠跑通,嫌棄速度慢的可以改一下訓練次數或者適應度函數。
在我的理解里,PSO優化BP的初始權值w和偏置b,有點像數據遷徙,等於用粒子去嘗試作為網絡的參數,然后訓練網絡的閾值,所以總是會看到PSO優化了權值和閾值的說法,(一開始我是沒有想通為什么能夠優化閾值的),下面是我的代碼實現過程,關於BP和PSO的原理就不一一贅述了,網上有很多大佬解釋的很詳細了……
首先是利用BP作為適應度函數
function [error] = BP_fit(gbest,input_num,hidden_num,output_num,net,inputn,outputn)
%BP_fit 此函數為PSO的適應度函數
% gbest:最優粒子
% input_num:輸入節點數目;
% output_num:輸出層節點數目;
% hidden_num:隱含層節點數目;
% net:網絡;
% inputn:網絡訓練輸入數據;
% outputn:網絡訓練輸出數據;
% error : 網絡輸出誤差,即PSO適應度函數值
w1 = gbest(1:input_num * hidden_num);
B1 = gbest(input_num * hidden_num + 1:input_num * hidden_num + hidden_num);
w2 = gbest(input_num * hidden_num + hidden_num + 1:input_num * hidden_num...
+ hidden_num + hidden_num * output_num);
B2 = gbest(input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:...
input_num * hidden_num + hidden_num + hidden_num * output_num + output_num);
net.iw{1,1} = reshape(w1,hidden_num,input_num);
net.lw{2,1} = reshape(w2,output_num,hidden_num);
net.b{1} = reshape(B1,hidden_num,1);
net.b{2} = B2';
%建立BP網絡
net.trainParam.epochs = 200;
net.trainParam.lr = 0.05;
net.trainParam.goal = 0.000001;
net.trainParam.show = 100;
net.trainParam.showWindow = 0;
net = train(net,inputn,outputn);
ty = sim(net,inputn);
error = sum(sum(abs((ty - outputn))));
end
然后是PSO部分:
%%基於多域PSO_RBF的6R機械臂逆運動學求解的研究
clear;
close;
clc;
%定義BP參數:
% input_num:輸入層節點數;
% output_num:輸出層節點數;
% hidden_num:隱含層節點數;
% inputn:網絡輸入;
% outputn:網絡輸出;
%定義PSO參數:
% max_iters:算法最大迭代次數
% w:粒子更新權值
% c1,c2:為粒子群更新學習率
% m:粒子長度,為BP中初始W、b的長度總和
% n:粒子群規模
% gbest:到達最優位置的粒子
format long
input_num = 3;
output_num = 3;
hidden_num = 25;
max_iters =10;
m = 500; %種群規模
n = input_num * hidden_num + hidden_num + hidden_num * output_num + output_num; %個體長度
w = 0.1;
c1 = 2;
c2 = 2;
%加載網絡輸入(空間任意點)和輸出(對應關節角的值)
load('pfile_i2.mat')
load('pfile_o2.mat')
% inputs_1 = angle_2';
inputs_1 = inputs_2';
outputs_1 = outputs_2';
train_x = inputs_1(:,1:490);
% train_y = outputs_1(4:5,1:490);
train_y = outputs_1(1:3,1:490);
test_x = inputs_1(:,491:500);
test_y = outputs_1(1:3,491:500);
% test_y = outputs_1(4:5,491:500);
[inputn,inputps] = mapminmax(train_x);
[outputn,outputps] = mapminmax(train_y);
net = newff(inputn,outputn,25);
%設置粒子的最小位置與最大位置
% w1閾值設定
for i = 1:input_num * hidden_num
MinX(i) = -0.01*ones(1);
MaxX(i) = 3.8*ones(1);
end
% B1閾值設定
for i = input_num * hidden_num + 1:input_num * hidden_num + hidden_num
MinX(i) = 1*ones(1);
MaxX(i) = 8*ones(1);
end
% w2閾值設定
for i = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num
MinX(i) = -0.01*ones(1);
MaxX(i) = 3.8*ones(1);
end
% B2閾值設定
for i = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num
MinX(i) = 1*ones(1);
MaxX(i) = 8*ones(1);
end
%%初始化位置參數
%產生初始粒子位置
pop = rands(m,n);
%初始化速度和適應度函數值
V = 0.15 * rands(m,n);
BsJ = 0;
%對初始粒子進行限制處理,將粒子篩選到自定義范圍內
for i = 1:m
for j = 1:input_num * hidden_num
if pop(i,j) < MinX(j)
pop(i,j) = MinX(j);
end
if pop(i,j) > MaxX(j)
pop(i,j) = MaxX(j);
end
end
for j = input_num * hidden_num + 1:input_num * hidden_num + hidden_num
if pop(i,j) < MinX(j)
pop(i,j) = MinX(j);
end
if pop(i,j) > MaxX(j)
pop(i,j) = MaxX(j);
end
end
for j = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num
if pop(i,j) < MinX(j)
pop(i,j) = MinX(j);
end
if pop(i,j) > MaxX(j)
pop(i,j) = MaxX(j);
end
end
for j = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num
if pop(i,j) < MinX(j)
pop(i,j) = MinX(j);
end
if pop(i,j) > MaxX(j)
pop(i,j) = MaxX(j);
end
end
end
%評估初始粒子
for s = 1:m
indivi = pop(s,:);
fitness = BP_fit(indivi,input_num,hidden_num,output_num,net,inputn,outputn);
BsJ = fitness; %調用適應度函數,更新每個粒子當前位置
Error(s,:) = BsJ; %儲存每個粒子的位置,即BP的最終誤差
end
[OderEr,IndexEr] = sort(Error);%將Error數組按升序排列
Errorleast = OderEr(1); %記錄全局最小值
for i = 1:m %記錄到達當前全局最優位置的粒子
if Error(i) == Errorleast
gbest = pop(i,:);
break;
end
end
ibest = pop; %當前粒子群中最優的個體,因為是初始粒子,所以最優個體還是個體本身
for kg = 1:max_iters %迭代次數
for s = 1:m
%個體有52%的可能性變異
for j = 1:n %粒子長度
for i = 1:m %種群規模,變異是針對某個粒子的某一個值的變異
if rand(1)<0.04
pop(i,j) = rands(1);
end
end
end
%r1,r2為粒子群算法參數
r1 = rand(1);
r2 = rand(1);
%個體位置和速度更新
V(s,:) = w * V(s,:) + c1 * r1 * (ibest(s,:)-pop(s,:)) + c2 * r2 * (gbest(1,:)-pop(s,:));
pop(s,:) = pop(s,:) + 0.3 * V(s,:);
%對更新的位置進行判斷,超過設定的范圍就處理下。粒子中不同的值對應不同的范圍
for j = 1:input_num * hidden_num
if pop(s,j) < MinX(j)
pop(s,j) = MinX(j);
end
if pop(s,j) > MaxX(j)
pop(s,j) = MaxX(j);
end
end
for j = input_num * hidden_num + 1:input_num * hidden_num + hidden_num
if pop(s,j) < MinX(j)
pop(s,j) = MinX(j);
end
if pop(s,j) > MaxX(j)
pop(s,j) = MaxX(j);
end
end
for j = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num
if pop(s,j) < MinX(j)
pop(s,j) = MinX(j);
end
if pop(s,j) > MaxX(j)
pop(s,j) = MaxX(j);
end
end
for j = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num
if pop(i,j) < MinX(j)
pop(i,j) = MinX(j);
end
if pop(i,j) > MaxX(j)
pop(i,j) = MaxX(j);
end
end
%更新后的每個個體適應度值
BsJ = BP_fit(indivi,input_num,hidden_num,output_num,net,inputn,outputn);
error(s,:) = BsJ;
%根據適應度值對個體最優和群體最優進行更新
if error(s)<Error(s)
ibest(s,:) = pop(s,:);
Error(s,:) = error(s);
end
%更新全局最優粒子以及最小誤差
if error(s)<Errorleast
gbest(s,:) = pop(s,:);
Errorleast = error(s);
end
end
Best(kg,:) = Errorleast;
end
%plot(Best);
save pfile_gbest gbest;
最后是利用訓練好的最優粒子去訓練網絡:
clear
clc
close;
load pfile_gbest;
input_num = 3;
output_num = 3;
hidden_num = 25;
w1 = gbest(1:input_num * hidden_num);
B1 = gbest(input_num * hidden_num + 1:input_num * hidden_num + hidden_num);
w2 = gbest(input_num * hidden_num + hidden_num + 1:input_num * hidden_num...
+ hidden_num + hidden_num * output_num);
B2 = gbest(input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:...
input_num * hidden_num + hidden_num + hidden_num * output_num + output_num);
net.iw{1,1} = reshape(w1,hidden_num,input_num);
net.lw{2,1} = reshape(w2,output_num,hidden_num);
net.b{1} = reshape(B1,hidden_num,1);
net.b{2} = B2';
load('pfile_i2.mat')
% load('pfile_a2.mat')
load('pfile_o2.mat')
% inputs_1 = angle_2';
inputs_1 = inputs_2';
outputs_1 = outputs_2';
train_x = inputs_1(:,1:490);
% train_y = outputs_1(4:5,1:490);
train_y = outputs_1(1:3,1:490);
test_x = inputs_1(:,491:500);
test_y = outputs_1(1:3,491:500);
% test_y = outputs_1(4:5,491:500);
[inputn,inputps] = mapminmax(train_x);
[outputn,outputps] = mapminmax(train_y);
%建立BP網絡
net.trainParam.epochs = 200;
net.trainParam.lr = 0.05;
net.trainParam.goal = 0.000001;
net = newff(inputn,outputn,25);
[net,per2] = train(net,inputn,outputn);
inputn_test = mapminmax('apply',test_x,inputps);
ty = sim(net,inputn_test);
net_J = mapminmax('reverse',ty,outputps);
error = abs(test_y - net_J);
水平有限,希望能給大家參考一下..........
