常用十大算法(十)— 踏棋盤算法
博客說明
文章所涉及的資料來自互聯網整理和個人總結,意在於個人學習和經驗匯總,如有什么地方侵權,請聯系本人刪除,謝謝!
介紹
- 馬踏棋盤算法也被稱為騎士周游問題
- 將馬隨機放在國際象棋的8×8棋盤Board0~7]的某個方格中,馬按走棋規則(馬走日字)進行移動。要求每個方格只進入一次,走遍棋盤上全部64個方格
思路
- 馬踏棋盤問題(騎士周游問題)實際上是圖的深度優先搜索(DFS)的應用。
- 如果使用回溯(就是深度優先搜索)來解決,假如馬兒踏了53個點,如圖:走到了第53個,坐標(1,0),發現已經走到盡頭,沒辦法,那就只能回退了,查看其他的路徑,就在棋盤上不停的回溯…… ,
代碼實現
package com.atguigu.horse;
import java.awt.Point;
import java.util.ArrayList;
import java.util.Comparator;
public class HorseChessboard {
private static int X; // 列
private static int Y; // 行
private static boolean visited[];
private static boolean finished;
public static void main(String[] args) {
X = 8;
Y = 8;
int row = 1;
int column = 1;
int[][] chessboard = new int[X][Y];
visited = new boolean[X * Y];
long start = System.currentTimeMillis();
traversalChessboard(chessboard, row - 1, column - 1, 1);
long end = System.currentTimeMillis();
System.out.println("時間: " + (end - start));
for(int[] rows : chessboard) {
for(int step: rows) {
System.out.print(step + "\t");
}
System.out.println();
}
}
public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {
chessboard[row][column] = step;
visited[row * X + column] = true;
ArrayList<Point> ps = next(new Point(column, row));
sort(ps);
while(!ps.isEmpty()) {
Point p = ps.remove(0);
if(!visited[p.y * X + p.x]) {
traversalChessboard(chessboard, p.y, p.x, step + 1);
}
}
if(step < X * Y && !finished ) {
chessboard[row][column] = 0;
visited[row * X + column] = false;
} else {
finished = true;
}
}
public static ArrayList<Point> next(Point curPoint) {
ArrayList<Point> ps = new ArrayList<Point>();
Point p1 = new Point();
if((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y -1) >= 0) {
ps.add(new Point(p1));
}
if((p1.x = curPoint.x - 1) >=0 && (p1.y=curPoint.y-2)>=0) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
return ps;
}
//排序
public static void sort(ArrayList<Point> ps) {
ps.sort(new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
int count1 = next(o1).size();
int count2 = next(o2).size();
if(count1 < count2) {
return -1;
} else if (count1 == count2) {
return 0;
} else {
return 1;
}
}
});
}
}
感謝
尚硅谷