幾乎可以作為任何需要基礎概率論知識的學科的前導資料
Random Graphs by Béla Bollobás 書里給出的就是快問快答的形式,這里摘幾個較新鮮的。不定期更新
概率論中的馬爾科夫不等式
if \(X\) is a non-negative r.v. with mean \(\mu\) and \(t\geq0\),then
改寫一下就成為Markov's inequality
概率論中的切比雪夫不等式
Now let \(X\) be a real-valued r.v. with mean \(\mu\) and variance \(\sigma^2\) .if \(d\geq 0\)
改寫一下就成為Chebyshev's inequality
the total variation distance
r-th factorial moment有什么用
其中\((k)_r\)是下降乘,共\(r\)項
Note that if \(X\) denotes the number of objects in a certain class then \(E_r(X)\) is the expected number of ordered r-tuples of elements of that class.
各種分布之間的聯系
給個鏈接
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
geometric distribution 幾何分布
The binomial distribution describes the number of successes among n trials, with the probability of a success being p. Now consider the number of failures encountered prior to the first success, and denote this by Y.
期望\(q/p\),方差\(q/p^2\),r-th factorial moment \(r!(q/p)^r\)
負二項分布
The number of failures prior to the rth success, say \(Zr\), is said to have a negative binomial distribution
Since Zr is the sum of r independent geometric r.vs,
期望\(rp/q\),方差\(rq/p^2\)
幾何分布的連續版本是指數分布(或負指數分布)
一個非負實隨機變量\(L\)被認為具有參數\(\lambda> 0\)的指數分布如果
PDF是\(\lambda e^{-\lambda t}\) 期望\(1/\lambda\) 方差\(1/\lambda^2\)
超幾何分布 從\(N\)個紅藍雙色球中抽取\(n\)個球的顏色統計
The hypergeometric distribution with parameters \(N,R\)and \(n\)\((0<n<N,0<R<N)\)
其中\(s=min\{n,R\}\)
泊松分布
期望\(\lambda>0\)
更新點Erdős–Rényi graph的東西
這里扔幾個鏈接
https://en.wikipedia.org/wiki/Erdős–Rényi_model
Exact probability of random graph being connected
Probability of not having a path between two certain nodes, in a random graph
Prove that: Probability of connectivity of a random graph is increasing with the size of the graph