1.概述
數據增強,可以幫助擴展數據集,對圖像的增強,就是對圖像的簡單形變,用來應對因拍照角度不同引起的圖片變形。
TensorFlow2給出了數據增強函數
2.數據增強(增大數據量)


數據增強在小數據量上可以增加模型的泛化性,在實際應用模型是能體現出效果

tf.keras.layers.Flatten()拉直層
拉直層可以變化張量的尺寸,把輸入特征拉直為一維數組,是不含計算參數的層
注: 1、 model.fit(x_train,y_train,batch_size=32,……)變為model.fit(image_gen_train.flow(x_train, y_train,batch_size=32), ……);
2、數據增強函數的輸入要求是 4 維,通過 reshape 調整; 3、如果報錯:缺少scipy 庫, pip install scipy 即可。
代碼:
沒有經過數據增強操作
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()
加了數據增強
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) # 給數據增加一個維度,從(60000, 28, 28)reshape為(60000, 28, 28, 1)
image_gen_train = ImageDataGenerator(
rescale=1. / 1., # 如為圖像,分母為255時,可歸至0~1
rotation_range=45, # 隨機45度旋轉
width_shift_range=.15, # 寬度偏移
height_shift_range=.15, # 高度偏移
horizontal_flip=False, # 水平翻轉
zoom_range=0.5 # 將圖像隨機縮放閾量50%
)
image_gen_train.fit(x_train)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
validation_freq=1)
model.summary()
