python 利用opencv實現顏色檢測


需要實現倒車輔助標記檢測的功能,倒車輔助標記顏色已經確定了,所以不需要使用深度學習的方法,那樣成本太高了,直接可以使用顏色檢測的方法。

  • 首先需要確定待檢測目標的HSV值

 1 import cv2
 2 
 3 img = cv2.imread('l3.png')
 4 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 5 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
 6 
 7 
 8 def mouse_click(event, x, y, flags, para):
 9     if event == cv2.EVENT_LBUTTONDOWN:  # 左邊鼠標點擊
10         print('PIX:', x, y)
11         print("BGR:", img[y, x])
12         print("GRAY:", gray[y, x])
13         print("HSV:", hsv[y, x])
14 
15 
16 if __name__ == '__main__':
17     cv2.namedWindow("img")
18     cv2.setMouseCallback("img", mouse_click)
19     while True:
20         cv2.imshow('img', img)
21         if cv2.waitKey() == ord('q'):
22             break
23     cv2.destroyAllWindows()

 

  • 然后利用顏色檢測,檢測出指定目標

 1 import numpy as np
 2 import cv2
 3 
 4 font = cv2.FONT_HERSHEY_SIMPLEX
 5 lower_red = np.array([0, 127, 128])  # 紅色閾值下界
 6 higher_red = np.array([10, 255, 255])  # 紅色閾值上界
 7 lower_yellow = np.array([15, 230, 230])  # 黃色閾值下界
 8 higher_yellow = np.array([35, 255, 255])  # 黃色閾值上界
 9 lower_blue = np.array([85,240,140])
10 higher_blue = np.array([100,255,165])
11 frame=cv2.imread("l3.png")
12 img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
13 mask_red = cv2.inRange(img_hsv, lower_red, higher_red)  # 可以認為是過濾出紅色部分,獲得紅色的掩膜
14 mask_yellow = cv2.inRange(img_hsv, lower_yellow, higher_yellow)  # 獲得綠色部分掩膜
15 mask_yellow = cv2.medianBlur(mask_yellow, 7)  # 中值濾波
16 mask_red = cv2.medianBlur(mask_red, 7)  # 中值濾波
17 mask_blue = cv2.inRange(img_hsv, lower_blue, higher_blue)  # 獲得綠色部分掩膜
18 mask_blue = cv2.medianBlur(mask_blue, 7)  # 中值濾波
19 #mask = cv2.bitwise_or(mask_green, mask_red)  # 三部分掩膜進行按位或運算
20 print(mask_red)
21 cnts1, hierarchy1 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 輪廓檢測 #紅色
22 cnts2, hierarchy2 = cv2.findContours(mask_blue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 輪廓檢測 #紅色
23 cnts3, hierarchy3 = cv2.findContours(mask_yellow, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
24 
25 for cnt in cnts1:
26     (x, y, w, h) = cv2.boundingRect(cnt)  # 該函數返回矩陣四個點
27     cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 將檢測到的顏色框起來
28     cv2.putText(frame, 'red', (x, y - 5), font, 0.7, (0, 0, 255), 2)
29 for cnt in cnts2:
30     (x, y, w, h) = cv2.boundingRect(cnt)  # 該函數返回矩陣四個點
31     cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 將檢測到的顏色框起來
32     cv2.putText(frame, 'blue', (x, y - 5), font, 0.7, (0, 0, 255), 2)
33 
34 for cnt in cnts3:
35     (x, y, w, h) = cv2.boundingRect(cnt)  # 該函數返回矩陣四個點
36     cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)  # 將檢測到的顏色框起來
37     cv2.putText(frame, 'green', (x, y - 5), font, 0.7, (0, 255, 0), 2)
38 cv2.imshow('frame', frame)
39 
40 cv2.waitKey(0)
41 cv2.destroyAllWindows()
  • 效果

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM