關於絕對值函數可導性的總結
\(|f(x)|\)
- 若 \(f(x_0)=0,\,f'(x_0)=0\)時,\(|f(x)|\) 在 \(x=x_0\) 可導;
- 若 \(f(x_0)\neq 0\) 時,\(|f(x)|\) 在 \(x=x_0\) 必可導;
\(\phi(x)=f(x)\cdot|g(x)|\)
- 若\(f(x)\)於\(x=x_0\)可導,\(|g(x)|\)於\(x_0\)連續但是不可導,那么\(\phi(x)=f(x)\cdot|g(x)|\)於\(x=x_0\)可導的充分必要條件為:\(f(x_0)=0\),而且\(\phi'(x)=f'(x)\cdot|g(x)|\),並且稱\(f(x)\)為\(|g(x)|\)於\(x=x_0\)的“磨光函數”。
- 由以上易推得:若\(f(x)\)於\(x=x_0\)連續,那么\(\phi(x)=f(x)\cdot|x-x_0|\)可導的充要條件為:\(f(x_0)=0\).
\(^{[1]}\) 趙紅牛.含絕對值函數的可導性討論[J].高等數學研究,2004,(5):40-50.