Linux內核驅動學習(九)GPIO外部輸入的處理


前言

前面是如何操作GPIO進行輸出,這里我重新實現了一個gpio的驅動,可以獲取外部信號的輸入。gpio-demo.c中已經包括檢測一個gpio的信號,並且包含了中斷和輪詢兩種方式,可以通過設備樹里的mode屬性進行選擇。

設備樹

本文檢測的輸入引腳是GPIO3_D0,具體的設備樹如下所示;

gpio-demo {
		compatible = "gpio-demo";
		input-gpio = <&gpio3 RK_PD0 GPIO_ACTIVE_LOW>;
		mode = <1>; // 0:poll 1:interrupt
		poll_time = <1000>; //ms 
};
  • compatible:設備兼容屬性為gpio-demo,與后面的驅動代碼中的
    gpio_demo_of_match[] = { { .compatible = "gpio-demo"}, {}, } 需要相同;
  • input-gpio:這個屬性值通過of_get_named_gpio來獲取;
  • mode:用於判斷當前的工作模式是輪詢還是中斷;
  • poll_time:輪詢模式下的周期,間隔多少毫秒會讀取一次gpio的狀態;

對於設備樹的解析,單獨封裝了一個接口;

static int gpio_parse_data(struct gpio_demo_device *di){

	int ret;
	struct gpio_platform_data *pdata;
	struct device *dev = di->dev;
	struct device_node *np = di->dev->of_node;

	pdata = devm_kzalloc(di->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata) {
		return -ENOMEM;
	}
	di->pdata = pdata;
	// set default value for platform data
	pdata->mode = DEFAULT_MODE;
	pdata->poll_ms = DEFAULT_POLL_TIME * 1000;

	dev_info(dev,"parse platform data\n");

	ret = of_property_read_u32(np, "mode", &pdata->mode);
	if (ret < 0) {
		dev_err(dev, "can't get mode property\n");
	}
	ret = of_property_read_u32(np, "poll_time", &pdata->poll_ms);
	if (ret < 0) {
		dev_err(dev, "can't get poll_ms property\n");		
	}

	pdata->gpio_index = of_get_named_gpio(np,"input-gpio", 0);
	if (pdata->gpio_index < 0) {
		dev_err(dev, "can't get input gpio\n");
	}
	// debug parse device tree data
	dev_info(dev, "Success:mode is %d\n", pdata->mode);
	dev_info(dev, "Success:gpio index is %d\n", pdata->gpio_index);
	return 0;
}

兩個結構體

gpio_platform_data

gpio_platform_data主要是對設備樹中眾多屬性的封裝;

struct gpio_platform_data {
	int mode;
	int count;
	int gpio_index; 
	struct mutex mtx;
	int poll_ms;
};

gpio_demo_device

gpio_demo_device是與設備驅動中相關資源的封裝,包括工作隊列等等;

struct gpio_demo_device {
	struct platform_device *pdev;
	struct device *dev;
	struct gpio_platform_data 	*pdata;
	struct workqueue_struct		*gpio_monitor_wq;
	struct delayed_work gpio_delay_work ;
	int gpio_irq;
};

兩種方式

在驅動的probe函數中,先通過gpio_parse_data解析設備樹文件,從而獲取mode屬性的值:

  • 0gpio_demo_init_poll初始化進入輪詢工作模式;
  • 1gpio_demo_init_interrupt初始化進入中斷工作模式;
static int gpio_demo_probe(struct platform_device *pdev){
	...
	ret = gpio_parse_data(priv);
	if (ret){
		dev_err(dev,"parse data failed\n");
	}
	...
	if (priv->pdata->mode == 0){
		gpio_demo_init_poll(priv); //輪詢
	} else {
		gpio_demo_init_interrupt(priv);//中斷
	}
}

輪詢

在輪詢工作模式下,已經通過gpio_demo_init_poll對工作隊列進行初始化,之后,后啟動運行gpio_demo_work任務,並在規定的調度時間內,重復檢測運行這個任務。
通過gpio_get_value(gpio_index)讀取GPIO3_D0上的電平狀態,如果需要對邊沿信號進行處理還需要做改動,本文只能對電平信號進行處理。

static void gpio_demo_work(struct work_struct *work) {

	struct gpio_demo_device *di = container_of(work,
			     struct gpio_demo_device,
			     gpio_delay_work.work);

	struct gpio_platform_data *padta = di->pdata;
	int gpio_index,value;
	//獲取gpio索引號
	gpio_index = padta->gpio_index;
	if (!gpio_is_valid(gpio_index) ) {
		dev_err(di->dev, "gpio is not valid\n");
		goto end;
	}
	if ( (value = gpio_get_value(gpio_index) ) == 0) {
		dev_info(di->dev,"get value is %d\n",value);
	}else{
		dev_info(di->dev,"get value is %d\n",value);
	}
	end:
	queue_delayed_work(di->gpio_monitor_wq, &di->gpio_delay_work,
			   msecs_to_jiffies(di->pdata->poll_ms));
}

外部中斷

中斷的申請和初始化在gpio_demo_init_interrupt函數中已經實現,如下所示;
通過gpio_to_irq接口獲取相應GPIO上的軟件中斷號,然后通過devm_request_irq申請中斷;

static int gpio_demo_init_interrupt(struct gpio_demo_device *di) {
	...
	// 獲取gpio上的中斷號
	irq = gpio_to_irq(gpio_index);
	...
	//申請中斷
	ret = devm_request_irq(di->dev, irq, gpio_demo_isr, 
					IRQF_TRIGGER_FALLING, //下降沿
					"gpio-demo-isr", //中斷名稱
					di);
	...
}

其中,每次外部發送一個下降沿信號,就會觸發中斷並進入gpio_demo_isr這個中斷服務程序;下面來看一下這個gpio_demo_isr,在這里可以做一些我們想做的事情;

static irqreturn_t gpio_demo_isr(int irq, void *dev_id)
{
	struct gpio_demo_device *di = (struct gpio_demo_device *)dev_id;
	struct gpio_platform_data *pdata = di->pdata;

	BUG_ON(irq != gpio_to_irq(pdata->gpio_index));
	//TODO 
	dev_info(di->dev, "%s\n", __func__);
	return IRQ_HANDLED;
}

最終,我只在中斷服務程序中打印了一下串口信息,方便驗證。

總結

通過這次學習和總結,總體了解了以下幾點;

  • 通過delayed_workGPIO進行輪詢操作,后面會再深入學習一下;
  • 學習了對於GPIO上的中斷申請,目前對於中斷還是剛好夠用的階段,中斷的篇幅較長,可以對其原理做一下學習,還有內核中中斷的機制;
  • 學習了內核中讀取設備樹的幾個接口;
  • 學習了platform設備驅動模型的框架;

附錄

#include <linux/module.h> 
#include <linux/init.h>

#include <linux/platform_device.h>
//API for libgpio
#include <linux/gpio.h>
//API for malloc
#include <linux/slab.h>
//API for device tree
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
//API for thread 
#include <linux/kthread.h>

#include <linux/delay.h>
#include <linux/mutex.h>
//API for delaywork
#include <linux/workqueue.h>

#include <linux/interrupt.h>
#include <linux/irq.h>

#define TIMER_MS_COUNTS 1000

// default value of dts 
#define DEFAULT_POLL_TIME 5
#define DEFAULT_MODE 1


struct gpio_platform_data {
	int mode;
	int count;
	int gpio_index; 
	struct mutex mtx;
	int poll_ms;
};


struct gpio_demo_device {

	struct platform_device *pdev;
	struct device *dev;
	struct gpio_platform_data 	*pdata;
	struct workqueue_struct		*gpio_monitor_wq;
	struct delayed_work gpio_delay_work ;
	int gpio_irq;
};

static int gpio_parse_data(struct gpio_demo_device *di){

	int ret;
	struct gpio_platform_data *pdata;
	struct device *dev = di->dev;
	struct device_node *np = di->dev->of_node;

	pdata = devm_kzalloc(di->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata) {
		return -ENOMEM;
	}
	di->pdata = pdata;
	// set default value for platform data
	pdata->mode = DEFAULT_MODE;
	pdata->poll_ms = DEFAULT_POLL_TIME * 1000;

	dev_info(dev,"parse platform data\n");

	ret = of_property_read_u32(np, "mode", &pdata->mode);
	if (ret < 0) {
		dev_err(dev, "can't get mode property\n");
	}
	ret = of_property_read_u32(np, "poll_time", &pdata->poll_ms);
	if (ret < 0) {
		dev_err(dev, "can't get poll_ms property\n");		
	}

	pdata->gpio_index = of_get_named_gpio(np,"input-gpio", 0);
	if (pdata->gpio_index < 0) {
		dev_err(dev, "can't get input gpio\n");
	}
	// debug parse device tree data
	dev_info(dev, "Success:mode is %d\n", pdata->mode);
	dev_info(dev, "Success:gpio index is %d\n", pdata->gpio_index);
	return 0;
}

static void gpio_demo_work(struct work_struct *work) {

	struct gpio_demo_device *di = container_of(work,
			     struct gpio_demo_device,
			     gpio_delay_work.work);

	struct gpio_platform_data *padta = di->pdata;
	int gpio_index,value;
	gpio_index = padta->gpio_index;
	if (!gpio_is_valid(gpio_index) ) {
		dev_err(di->dev, "gpio is not valid\n");
		goto end;
	}
	if ( (value = gpio_get_value(gpio_index) ) == 0) {
		dev_info(di->dev,"get value is %d\n",value);
	}else{
		dev_info(di->dev,"get value is %d\n",value);
	}
	end:
	queue_delayed_work(di->gpio_monitor_wq, &di->gpio_delay_work,
			   msecs_to_jiffies(di->pdata->poll_ms));
}

static int gpio_demo_init_poll(struct gpio_demo_device *di) {

	dev_info(di->dev,"%s\n", __func__);

	di->gpio_monitor_wq = alloc_ordered_workqueue("%s",
			WQ_MEM_RECLAIM | WQ_FREEZABLE, "gpio-demo-wq");


	INIT_DELAYED_WORK(&di->gpio_delay_work, gpio_demo_work);
	queue_delayed_work(di->gpio_monitor_wq, &di->gpio_delay_work,
			   msecs_to_jiffies(TIMER_MS_COUNTS * 5));


	return 0;
}

static irqreturn_t gpio_demo_isr(int irq, void *dev_id)
{
	struct gpio_demo_device *di = (struct gpio_demo_device *)dev_id;
	struct gpio_platform_data *pdata = di->pdata;

	BUG_ON(irq != gpio_to_irq(pdata->gpio_index));

	dev_info(di->dev, "%s\n", __func__);
	//printk("%s\n",__func__);
	return IRQ_HANDLED;
}

static int gpio_demo_init_interrupt(struct gpio_demo_device *di) {
	
	int irq, ret;
	int gpio_index = di->pdata->gpio_index;
	dev_info(di->dev,"%s\n", __func__);

	if (!gpio_is_valid(gpio_index)){
		return -1;
	}

	irq = gpio_to_irq(gpio_index);

	if (irq < 0) {
		dev_err(di->dev, "Unable to get irq number for GPIO %d, error %d\n",
				gpio_index, irq);
		gpio_free(gpio_index);
		return -1;
	}
	ret = devm_request_irq(di->dev, irq, gpio_demo_isr,
					IRQF_TRIGGER_FALLING,
					"gpio-demo-isr",
					di);
	if (ret) {
		dev_err(di->dev, "Unable to claim irq %d; error %d\n",
				irq, ret);
		gpio_free(gpio_index);
		return -1;
	}

	return 0;
}


static int gpio_demo_probe(struct platform_device *pdev){

	int ret;
	struct gpio_demo_device *priv;
	struct device *dev = &pdev->dev;

	priv = devm_kzalloc(dev, sizeof(*priv) , GFP_KERNEL);

	if (!priv) {
		return -ENOMEM;
	}
	priv->dev = dev; //important 

	ret = gpio_parse_data(priv);
	if (ret){
		dev_err(dev,"parse data failed\n");
	}

	platform_set_drvdata(pdev,priv);

	if (priv->pdata->mode == 0){
		gpio_demo_init_poll(priv);
	} else {
		gpio_demo_init_interrupt(priv);
	}
	return 0;
}
#ifdef CONFIG_OF
static struct of_device_id gpio_demo_of_match[] = {
	{ .compatible = "gpio-demo"},
	{},
}

MODULE_DEVICE_TABLE(of,gpio_demo_of_match);
#else
static struct of_device_id gpio_demo_of_match[] = {
	{ },
}
#endif

static struct platform_driver gpio_demo_driver = {
	.probe = gpio_demo_probe,
	.driver = {
		.name = "gpio-demo-device",
		.owner = THIS_MODULE,
		.of_match_table = of_match_ptr(gpio_demo_of_match),
	}
};

static int __init gpio_demo_init(void){
	return  platform_driver_register(&gpio_demo_driver);
}

static void __exit gpio_demo_exit(void){
	platform_driver_unregister(&gpio_demo_driver);
}

late_initcall(gpio_demo_init);
module_exit(gpio_demo_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Gpio demo Driver");
MODULE_ALIAS("platform:gpio-demo");


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM