下載Anaconda
- 打開Anaconda下載地址,然后下載最新的Anaconda。
- 打開終端,進入Anaconda下載包所在的文件夾,運行
bash Anaconda3-2020.02-Linux-x86_64.sh
,一路y
即可。 - 安裝完成后運行
conda --version
檢測是否安裝成功。
搭建Tensorflow
- 在終端中輸入
conda create -n tensorflow python=3.7
,一路y
即可。
- 在終端中輸入
conda activate tensorflow
即可激活Tensorflow環境,conda deactivate
即可退出Tensorflow環境。 - 在終端中輸入人
pip install --ignore-installed --upgrade tensorflow
進行安裝/升級。
此時,Tensorflow環境已經搭建完畢。
進行測試
在終端中輸入touch test.py
創建文件,修改文件內容為
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
if __name__=='__main__':
g = tf.Graph()
# add ops to the user created graph
with g.as_default():
hello = tf.constant('Hello Tensorflow')
sess = tf.compat.v1.Session()
print(sess.run(hello))
在終端中輸入python test.py
,結果如下
在Pycharm中整合Tensorflow環境
- file -> new project
- 選擇Existing interpreter -> Conda Environment -> Ok -> Create即可。
進行測試
創建test.py,輸入如下代碼:
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
if __name__=='__main__':
g = tf.Graph()
# add ops to the user created graph
with g.as_default():
hello = tf.constant('Hello Tensorflow')
sess = tf.compat.v1.Session()
print(sess.run(hello))
運行結果如下:
通常會彈出一些提示信息
2020-04-20 17:43:50.307721: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory
2020-04-20 17:43:50.307796: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory
2020-04-20 17:43:50.307805: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
這些信息時提示當前系統沒有安裝TensorRT相關的內容,如果不需要GPU支持,直接忽略即可,解決這些Warning的方法:在終端中運行如下代碼
# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt-get update
# Install NVIDIA driver
sudo apt-get install --no-install-recommends nvidia-driver-430
# Reboot. Check that GPUs are visible using the command: nvidia-smi
# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
cuda-10-1 \
libcudnn7=7.6.4.38-1+cuda10.1 \
libcudnn7-dev=7.6.4.38-1+cuda10.1
# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends libnvinfer6=6.0.1-1+cuda10.1 \
libnvinfer-dev=6.0.1-1+cuda10.1 \
libnvinfer-plugin6=6.0.1-1+cuda10.1
結果如下: