版權聲明:勤學 修德 明辨 篤實 - CSDN周雄偉 https://blog.csdn.net/ebzxw/article/details/80701613 </div>
<link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f1a9c33fcd.css">
<div class="htmledit_views" id="content_views">
<p>已有環境:python3.7.1<br></p><p>anaconda隔離管理多個環境,互不影響。這里,在anaconda中安裝最新的python3.6.5 版本。</p><p>linux環境下使用anaconda安裝tensorflow步驟見:<a href="https://blog.csdn.net/ebzxw/article/details/80693152" rel="nofollow" target="_blank">https://blog.csdn.net/ebzxw/article/details/80693152</a></p><p><strong>一. 安裝anaconda</strong></p><p>1. 下載地址: <a href="https://www.anaconda.com/download/#windows" rel="nofollow" target="_blank">https://www.anaconda.com/download/#windows</a></p><p><img src="https://img-blog.csdn.net/20180615101323644?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p>2. 執行下載文件 Anaconda3-5.2.0-<a href="https://www.baidu.com/s?wd=Windows&tn=24004469_oem_dg&rsv_dl=gh_pl_sl_csd" target="_blank">Windows</a>-x86_64.exe, 默認配置安裝。</p><p><span style="background-color:rgb(255,255,255);">3. 檢查安裝結果。進入到windows中的命令模式:</span></p><p style="background-color:rgb(255,255,255);">(1)檢測anaconda環境是否安裝成功:conda --version</p><p style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615193442552?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p style="background-color:rgb(255,255,255);">(2)檢測目前安裝了哪些環境變量:conda info --envs</p><p style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615193459890?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p style="background-color:rgb(255,255,255);">(3) 查看當前有哪些可以使用的tensorflow版本:<strong>conda search --full -name tensorflow</strong></p><p><img src="https://img-blog.csdn.net/20180615193553707?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""></p><p><span style="background-color:rgb(255,255,255);">(4) 查看tensorflow包信息及依賴關系:<strong>conda info tensorflow</strong></span><br></p><p><span style="background-color:rgb(255,255,255);"><strong><img src="https://img-blog.csdn.net/2018061521501133?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></strong></span></p><p><span style="font-weight:bold;">二. 在anaconda中安裝tensorflow</span></p><p><span style="background-color:rgb(255,255,255);">1. 進入windows命令模式,創建tfenv環境,安裝python3.6: </span><span style="background-color:rgb(255,255,255);"><strong>conda create --name tfenv python=3.6</strong></span></p><div><img src="https://img-blog.csdn.net/20180615220036678?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></div><p><span style="background-color:rgb(255,255,255);">2 . <span style="background-color:rgb(255,255,255);">激活tensflow的tfenv環境: activate tfenv</span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615220551804?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"> 檢測tfenv的環境添加到了Anaconda里面:conda info --envs</span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/2018061522080997?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);">看到,已經創建成功。</span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);">檢測當前環境中的python的版本:python --version</span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615221846949?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);">退出tfenv的環境:deactivate</span><br></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615222102462?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);">3. 在tfenv環境<a href="https://www.baidu.com/s?wd=%E4%B8%AD%E6%AD%A3%E5%BC%8F&tn=24004469_oem_dg&rsv_dl=gh_pl_sl_csd" target="_blank">中正式</a>安裝tensorflow包</span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);">1)<span style="background-color:rgb(255,255,255);">激活tensflow的tfenv環境: activate tfenv</span></span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);">2)pip install --upgrade --ignore-installed tensorflow</span></span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615222656314?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615224852188?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);">3) 驗證功能正常:python 進入代碼環境</span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615225105865?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></span></span></span></span></p><pre onclick="hljs.copyCode(event)"><code class="language-python hljs"><ol class="hljs-ln"><li><div class="hljs-ln-numbers"><div class="hljs-ln-line hljs-ln-n" data-line-number="1"></div></div><div class="hljs-ln-code"><div class="hljs-ln-line"><span class="hljs-keyword">import</span> tensorflow <span class="hljs-keyword">as</span> tf</div></div></li><li><div class="hljs-ln-numbers"><div class="hljs-ln-line hljs-ln-n" data-line-number="2"></div></div><div class="hljs-ln-code"><div class="hljs-ln-line">hello = tf.constant(<span class="hljs-string">'hello,tf'</span>)</div></div></li><li><div class="hljs-ln-numbers"><div class="hljs-ln-line hljs-ln-n" data-line-number="3"></div></div><div class="hljs-ln-code"><div class="hljs-ln-line">sess = tf.Session()</div></div></li><li><div class="hljs-ln-numbers"><div class="hljs-ln-line hljs-ln-n" data-line-number="4"></div></div><div class="hljs-ln-code"><div class="hljs-ln-line">print(sess.run(hello))</div></div></li></ol></code><div class="hljs-button" data-title="復制"></div></pre><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><img src="https://img-blog.csdn.net/20180615225701383?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);">可以看到, 該環境下 tensorflow 工作正常。</span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="font-weight:700;">三. 安裝可能的異常</span><br></span></span></span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"></span></span></span></span></p><p style="background-color:rgb(255,255,255);"><span><span style="color:rgb(255,0,0);">溫馨提示:如果你的conda和tensorflow環境都是安裝成功的,但是一用測試代碼進行跑的時候就出問題了,那么注意,這個原因你由於你在安裝tensorflow的時候,是直接在cmd下,而不是在你用conda激活的一個環境,所以導致,tensorflow並沒有直接嵌入到conda環境,所以,就導致無法導入模塊的一個錯誤;</span></span></p><p style="background-color:rgb(255,255,255);"><span><span style="color:rgb(255,0,0);">解決方法:(1)只需要在activate tfenv</span></span></p><p style="background-color:rgb(255,255,255);"><span><span style="color:rgb(255,0,0);">(2)然后再使用 <span style="background-color:rgb(255,255,255);">pip install --upgrade --ignore-installed tensorflow </span>命令安裝就可以了</span></span></p><p><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="background-color:rgb(255,255,255);"><span style="font-weight:700;background-color:rgb(255,255,255);">四. 將tensorflow嵌入到IDE中</span></span></span></span></span></p><p>這里的關鍵是配置后,IDE使用的python環境包含tensorflow就可以。</p><p>1. windows操作命令下設置默認python環境</p><p>可通過環境變量的順序來設置。(這里是之前就有的python3.6.1環境和在anaconda中裝的python3.6.5)</p><p><img src="https://img-blog.csdn.net/20180616100818536?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p>“系統屬性”頁面,點擊“環境變量” ,選中PATH,點“編輯”</p><p><img src="https://img-blog.csdn.net/20180616100952319?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p>選中希望優先執行的python版本路徑,“上移”到頂。 這里是把anaconda安裝后默認在最上面,改為原來的3.6.1版本了。</p><p><img src="https://img-blog.csdn.net/20180616101110912?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p><strong>結果驗證與環境切換:</strong></p><p><img src="https://img-blog.csdn.net/20180616101310565?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p><img src="https://img-blog.csdn.net/20180616101403452?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p>2. VSCODE里設置默認python環境 (演示設置為原來python3.6.1)<br></p><p>打開編輯器。 文件 - 首選項 - 設置</p><p>找到“用戶工作區設置”,更改 python.pythonPath 配置變量即可。</p><p></p><div style="color:rgb(212,212,212);background-color:rgb(30,30,30);font-family:Consolas, 'Courier New', monospace;font-size:14px;line-height:19px;white-space:pre;"><div> <span style="color:#9cdcfe;">"python.pythonPath"</span>: <span style="color:#ce9178;">"C:</span><span style="color:#d7ba7d;">\\</span><span style="color:#ce9178;">Users</span><span style="color:#d7ba7d;">\\</span><span style="color:#ce9178;">user</span><span style="color:#d7ba7d;">\\</span><span style="color:#ce9178;">AppData</span><span style="color:#d7ba7d;">\\</span><span style="color:#ce9178;">Local</span><span style="color:#d7ba7d;">\\</span><span style="color:#ce9178;">Programs</span><span style="color:#d7ba7d;">\\</span><span style="color:#ce9178;">python</span><span style="color:#d7ba7d;">\\</span><span style="color:#ce9178;">Python36</span><span style="color:#d7ba7d;">\\</span><span style="color:#ce9178;">python.exe"</span></div><div><span style="color:#608b4e;">// "python.pythonPath": "C:\\Users\\user\\Anaconda3\\python.exe" </span></div><div></div></div>界面如下圖:<p><img src="https://img-blog.csdn.net/20180616101653664?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Vienh3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" alt=""><br></p><p>重啟vscode即可。</p> </div>
</div>