博客轉自:https://blog.csdn.net/hcx25909/article/details/12110959
在理解了move_base的基礎上,我們開始機器人的定位與導航。gmaping包是用來生成地圖的,需要使用實際的機器人獲取激光或者深度數據,所以我們先在已有的地圖上進行導航與定位的仿真。 amcl是移動機器人二維環境下的概率定位系統。它實現了自適應(或KLD采樣)的蒙特卡羅定位方法,其中針對已有的地圖使用粒子濾波器跟蹤一個機器人的姿態。
一、測試
首先運行機器人節點:
roslaunch rbx1_bringup fake_turtlebot.launch
然后運行amcl節點,使用測試地圖:
roslaunch rbx1_nav fake_amcl.launch map:=test_map.yaml
可以看一下fake_amcl.launch這個文件的內容:
<launch> <!-- Set the name of the map yaml file: can be overridden on the command line. --> <arg name="map" default="test_map.yaml" /> <!-- Run the map server with the desired map --> <node name="map_server" pkg="map_server" type="map_server" args="$(find rbx1_nav)/maps/$(arg map)"/> <!-- The move_base node --> <include file="$(find rbx1_nav)/launch/fake_move_base.launch" /> <!-- Run fake localization compatible with AMCL output --> <node pkg="fake_localization" type="fake_localization" name="fake_localization" output="screen" /> <!-- For fake localization we need static transforms between /odom and /map and /map and /world --> <node pkg="tf" type="static_transform_publisher" name="odom_map_broadcaster" args="0 0 0 0 0 0 /odom /map 100" /> </launch>
這個lanuch文件作用是加載地圖,並且調用fake_move_base.launch文件打開move_base節點並加載配置文件,最后運行amcl。 然后運行rviz:
rosrun rviz rviz -d `rospack find rbx1_nav`/nav_fuerte.vcg
indigo/kinetic
rosrun rviz rviz -d `rospack find rbx1_nav`/nav.rviz
這時在rviz中就應該顯示出了地圖和機器人:
現在就可以通過rviz在地圖上選擇目標位置了,然后就會看到機器人自動規划出一條全局路徑,並且導航前進:
二、自主導航
在實際應用中,我們往往希望機器人能夠自主進行定位和導航,不需要認為的干預,這樣才更智能化。在這一節的測試中,我們讓目標點在地圖中隨機生成,然后機器人自動導航到達目標。 這里運行的主要文件是:fake_nav_test.launch,讓我們來看一下這個文件的內容:
<launch> <param name="use_sim_time" value="false" /> <!-- Start the ArbotiX controller --> <include file="$(find rbx1_bringup)/launch/fake_turtlebot.launch" /> <!-- Run the map server with the desired map --> <node name="map_server" pkg="map_server" type="map_server" args="$(find rbx1_nav)/maps/test_map.yaml"/> <!-- The move_base node --> <node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen"> <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml" command="load" ns="global_costmap" /> <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml" command="load" ns="local_costmap" /> <rosparam file="$(find rbx1_nav)/config/fake/local_costmap_params.yaml" command="load" /> <rosparam file="$(find rbx1_nav)/config/fake/global_costmap_params.yaml" command="load" /> <rosparam file="$(find rbx1_nav)/config/fake/base_local_planner_params.yaml" command="load" /> <rosparam file="$(find rbx1_nav)/config/nav_test_params.yaml" command="load" /> </node> <!-- Run fake localization compatible with AMCL output --> <node pkg="fake_localization" type="fake_localization" name="fake_localization" output="screen" /> <!-- For fake localization we need static transform between /odom and /map --> <node pkg="tf" type="static_transform_publisher" name="map_odom_broadcaster" args="0 0 0 0 0 0 /map /odom 100" /> <!-- Start the navigation test --> <node pkg="rbx1_nav" type="nav_test.py" name="nav_test" output="screen"> <param name="rest_time" value="1" /> <param name="fake_test" value="true" /> </node> </launch>
這個lanuch的功能比較多:
- 加載機器人驅動
- 加載地圖
- 啟動move_base節點,並且加載配置文件
- 運行amcl節點
- 然后加載nav_test.py執行文件,進行隨機導航
相當於是把我們之前實驗中的多個lanuch文件合成了一個文件。現在開始進行測試,先運行ROS:
roscore
然后我們運行一個監控的窗口,可以實時看到機器人發送的數據:
rxconsole
接着運行lanuch文件,並且在一個新的終端中打開rviz:
roslaunch rbx1_nav fake_nav_test.launch rosrun rviz rviz -d `rospack find rbx1_nav`/nav_test_fuerte.vcg
indigo/kinetic
//todo
好了,此時就看到了機器人已經放在地圖當中了。然后我們點擊rviz上的“2D Pose Estimate”按鍵,然后左鍵在機器人上單擊,讓綠色的箭頭和黃色的箭頭重合,機器人就開始隨機選擇目標導航了:
在監控窗口中,我們可以看到機器人發送的狀態信息:
其中包括距離信息、狀態信息、目標的編號、成功率和速度等信息。
三、導航代碼分析
#!/usr/bin/env python import roslib; roslib.load_manifest('rbx1_nav') import rospy import actionlib from actionlib_msgs.msg import * from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal from random import sample from math import pow, sqrt class NavTest(): def __init__(self): rospy.init_node('nav_test', anonymous=True) rospy.on_shutdown(self.shutdown) # How long in seconds should the robot pause at each location? # 在每個目標位置暫停的時間 self.rest_time = rospy.get_param("~rest_time", 10) # Are we running in the fake simulator? # 是否仿真? self.fake_test = rospy.get_param("~fake_test", False) # Goal state return values # 到達目標的狀態 goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED', 'SUCCEEDED', 'ABORTED', 'REJECTED', 'PREEMPTING', 'RECALLING', 'RECALLED', 'LOST'] # Set up the goal locations. Poses are defined in the map frame. # An easy way to find the pose coordinates is to point-and-click # Nav Goals in RViz when running in the simulator. # Pose coordinates are then displayed in the terminal # that was used to launch RViz. # 設置目標點的位置 # 如果想要獲得某一點的坐標,在rviz中點擊 2D Nav Goal 按鍵,然后單機地圖中一點 # 在終端中就會看到坐標信息 locations = dict() locations['hall_foyer'] = Pose(Point(0.643, 4.720, 0.000), Quaternion(0.000, 0.000, 0.223, 0.975)) locations['hall_kitchen'] = Pose(Point(-1.994, 4.382, 0.000), Quaternion(0.000, 0.000, -0.670, 0.743)) locations['hall_bedroom'] = Pose(Point(-3.719, 4.401, 0.000), Quaternion(0.000, 0.000, 0.733, 0.680)) locations['living_room_1'] = Pose(Point(0.720, 2.229, 0.000), Quaternion(0.000, 0.000, 0.786, 0.618)) locations['living_room_2'] = Pose(Point(1.471, 1.007, 0.000), Quaternion(0.000, 0.000, 0.480, 0.877)) locations['dining_room_1'] = Pose(Point(-0.861, -0.019, 0.000), Quaternion(0.000, 0.000, 0.892, -0.451)) # Publisher to manually control the robot (e.g. to stop it) # 發布控制機器人的消息 self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist) # Subscribe to the move_base action server # 訂閱move_base服務器的消息 self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction) rospy.loginfo("Waiting for move_base action server...") # Wait 60 seconds for the action server to become available # 60s等待時間限制 self.move_base.wait_for_server(rospy.Duration(60)) rospy.loginfo("Connected to move base server") # A variable to hold the initial pose of the robot to be set by # the user in RViz # 保存機器人的在rviz中的初始位置 initial_pose = PoseWithCovarianceStamped() # Variables to keep track of success rate, running time, # and distance traveled # 保存成功率、運行時間、和距離的變量 n_locations = len(locations) n_goals = 0 n_successes = 0 i = n_locations distance_traveled = 0 start_time = rospy.Time.now() running_time = 0 location = "" last_location = "" # Get the initial pose from the user # 獲取初始位置(仿真中可以不需要) rospy.loginfo("*** Click the 2D Pose Estimate button in RViz to set the robot's initial pose...") rospy.wait_for_message('initialpose', PoseWithCovarianceStamped) self.last_location = Pose() rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose) # Make sure we have the initial pose # 確保有初始位置 while initial_pose.header.stamp == "": rospy.sleep(1) rospy.loginfo("Starting navigation test") # Begin the main loop and run through a sequence of locations # 開始主循環,隨機導航 while not rospy.is_shutdown(): # If we've gone through the current sequence, # start with a new random sequence # 如果已經走完了所有點,再重新開始排序 if i == n_locations: i = 0 sequence = sample(locations, n_locations) # Skip over first location if it is the same as # the last location # 如果最后一個點和第一個點相同,則跳過 if sequence[0] == last_location: i = 1 # Get the next location in the current sequence # 在當前的排序中獲取下一個目標點 location = sequence[i] # Keep track of the distance traveled. # Use updated initial pose if available. # 跟蹤形式距離 # 使用更新的初始位置 if initial_pose.header.stamp == "": distance = sqrt(pow(locations[location].position.x - locations[last_location].position.x, 2) + pow(locations[location].position.y - locations[last_location].position.y, 2)) else: rospy.loginfo("Updating current pose.") distance = sqrt(pow(locations[location].position.x - initial_pose.pose.pose.position.x, 2) + pow(locations[location].position.y - initial_pose.pose.pose.position.y, 2)) initial_pose.header.stamp = "" # Store the last location for distance calculations # 存儲上一次的位置,計算距離 last_location = location # Increment the counters # 計數器加1 i += 1 n_goals += 1 # Set up the next goal location # 設定下一個目標點 self.goal = MoveBaseGoal() self.goal.target_pose.pose = locations[location] self.goal.target_pose.header.frame_id = 'map' self.goal.target_pose.header.stamp = rospy.Time.now() # Let the user know where the robot is going next # 讓用戶知道下一個位置 rospy.loginfo("Going to: " + str(location)) # Start the robot toward the next location # 向下一個位置進發 self.move_base.send_goal(self.goal) # Allow 5 minutes to get there # 五分鍾時間限制 finished_within_time = self.move_base.wait_for_result(rospy.Duration(300)) # Check for success or failure # 查看是否成功到達 if not finished_within_time: self.move_base.cancel_goal() rospy.loginfo("Timed out achieving goal") else: state = self.move_base.get_state() if state == GoalStatus.SUCCEEDED: rospy.loginfo("Goal succeeded!") n_successes += 1 distance_traveled += distance rospy.loginfo("State:" + str(state)) else: rospy.loginfo("Goal failed with error code: " + str(goal_states[state])) # How long have we been running? # 運行所用時間 running_time = rospy.Time.now() - start_time running_time = running_time.secs / 60.0 # Print a summary success/failure, distance traveled and time elapsed # 輸出本次導航的所有信息 rospy.loginfo("Success so far: " + str(n_successes) + "/" + str(n_goals) + " = " + str(100 * n_successes/n_goals) + "%") rospy.loginfo("Running time: " + str(trunc(running_time, 1)) + " min Distance: " + str(trunc(distance_traveled, 1)) + " m") rospy.sleep(self.rest_time) def update_initial_pose(self, initial_pose): self.initial_pose = initial_pose def shutdown(self): rospy.loginfo("Stopping the robot...") self.move_base.cancel_goal() rospy.sleep(2) self.cmd_vel_pub.publish(Twist()) rospy.sleep(1) def trunc(f, n): # Truncates/pads a float f to n decimal places without rounding slen = len('%.*f' % (n, f)) return float(str(f)[:slen]) if __name__ == '__main__': try: NavTest() rospy.spin() except rospy.ROSInterruptException: rospy.loginfo("AMCL navigation test finished.")