Python的數據正態性檢驗


在做數據分析或者統計的時候,經常需要進行數據正態性的檢驗,因為很多假設都是基於正態分布的基礎之上的,例如:T檢驗

在Python中,主要有以下檢驗正態性的方法:

1. scipy.stats.shapiro —— Shapiro-Wilk test,屬於專門用來做正態性檢驗的模塊,其原假設:樣本數據符合正態分布

注:適用於小樣本。

其函數定位為:

def shapiro(x):
    """
    Perform the Shapiro-Wilk test for normality.

    The Shapiro-Wilk test tests the null hypothesis that the
    data was drawn from a normal distribution.

    Parameters
    ----------
    x : array_like
        Array of sample data.

    Returns
    -------
    W : float
        The test statistic.
    p-value : float
        The p-value for the hypothesis test.

x參數為樣本值序列,返回值中第一個為檢驗統計量,第二個為P值,當P值大於指定的顯著性水平,則接受原假設。

2. scipy.stats.kstest(K-S檢驗):可以檢驗多種分布,不止正態分布,其原假設:數據符合正態分布

其函數定義為:

def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'):
    """
    Perform the Kolmogorov-Smirnov test for goodness of fit.

    This performs a test of the distribution G(x) of an observed
    random variable against a given distribution F(x). Under the null
    hypothesis the two distributions are identical, G(x)=F(x). The
    alternative hypothesis can be either 'two-sided' (default), 'less'
    or 'greater'. The KS test is only valid for continuous distributions.

    Parameters
    ----------
    rvs : str, array or callable
        If a string, it should be the name of a distribution in `scipy.stats`.
        If an array, it should be a 1-D array of observations of random
        variables.
        If a callable, it should be a function to generate random variables;
        it is required to have a keyword argument `size`.
    cdf : str or callable
        If a string, it should be the name of a distribution in `scipy.stats`.
        If `rvs` is a string then `cdf` can be False or the same as `rvs`.
        If a callable, that callable is used to calculate the cdf.
    args : tuple, sequence, optional
        Distribution parameters, used if `rvs` or `cdf` are strings.
    N : int, optional
        Sample size if `rvs` is string or callable.  Default is 20.
    alternative : {'two-sided', 'less','greater'}, optional
        Defines the alternative hypothesis (see explanation above).
        Default is 'two-sided'.
    mode : 'approx' (default) or 'asymp', optional
        Defines the distribution used for calculating the p-value.

          - 'approx' : use approximation to exact distribution of test statistic
          - 'asymp' : use asymptotic distribution of test statistic

    Returns
    -------
    statistic : float
        KS test statistic, either D, D+ or D-.
    pvalue :  float
        One-tailed or two-tailed p-value.

參數是:

rvs:待檢驗數據。

cdf:檢驗分布,例如'norm','expon','rayleigh','gamma'等分布,設置為'norm'時表示正態分布。

alternative:默認為雙側檢驗,可以設置為'less'或'greater'作單側檢驗。

model:'approx'(默認值),表示使用檢驗統計量的精確分布的近視值;'asymp':使用檢驗統計量的漸進分布。

其返回值中第一個為統計量,第二個為P值

3. scipy.stats.normaltest:正態性檢驗,其原假設:樣本來自正態分布

其函數定義為:

def normaltest(a, axis=0, nan_policy='propagate'):
    """
    Test whether a sample differs from a normal distribution.

    This function tests the null hypothesis that a sample comes
    from a normal distribution.  It is based on D'Agostino and
    Pearson's [1]_, [2]_ test that combines skew and kurtosis to
    produce an omnibus test of normality.


    Parameters
    ----------
    a : array_like
        The array containing the sample to be tested.
    axis : int or None, optional
        Axis along which to compute test. Default is 0. If None,
        compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'.

    Returns
    -------
    statistic : float or array
        ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
        ``k`` is the z-score returned by `kurtosistest`.
    pvalue : float or array
       A 2-sided chi squared probability for the hypothesis test.

其參數:

axis=None 可以表示對整個數據做檢驗,默認值是0。

nan_policy:當輸入的數據中有nan時,'propagate',返回空值;'raise' 時,拋出錯誤;'omit' 時,忽略空值。

其返回值中,第一個是統計量,第二個是P值。

4. scipy.stats.anderson:由 scipy.stats.kstest 改進而來,用於檢驗樣本是否屬於某一分布(正態分布、指數分布、logistic 或者 Gumbel等分布)

其函數定義為:

def anderson(x, dist='norm'):
    """
    Anderson-Darling test for data coming from a particular distribution

    The Anderson-Darling tests the null hypothesis that a sample is drawn from a population that follows a particular distribution.
    For the Anderson-Darling test, the critical values depend on
    which distribution is being tested against.  This function works
    for normal, exponential, logistic, or Gumbel (Extreme Value
    Type I) distributions.

    Parameters
    ----------
    x : array_like
        array of sample data
    dist : {'norm','expon','logistic','gumbel','gumbel_l', gumbel_r',
        'extreme1'}, optional
        the type of distribution to test against.  The default is 'norm'
        and 'extreme1', 'gumbel_l' and 'gumbel' are synonyms.

    Returns
    -------
    statistic : float
        The Anderson-Darling test statistic
    critical_values : list
        The critical values for this distribution
    significance_level : list
        The significance levels for the corresponding critical values
        in percents.  The function returns critical values for a
        differing set of significance levels depending on the
        distribution that is being tested against.

其參數:

x和dist分別表示樣本數據和分布。

返回值有三個,第一個表示統計值,第二個表示評價值,第三個是顯著性水平;評價值和顯著性水平對應。

對於不同的分布,顯著性水平不一樣

    Critical values provided are for the following significance levels:

    normal/exponenential
        15%, 10%, 5%, 2.5%, 1%
    logistic
        25%, 10%, 5%, 2.5%, 1%, 0.5%
    Gumbel
        25%, 10%, 5%, 2.5%, 1%

關於統計值與評價值的對比:當統計值大於這些評價值時,表示在對應的顯著性水平下,原假設被拒絕,即不屬於某分布。

    If the returned statistic is larger than these critical values then
    for the corresponding significance level, the null hypothesis that
    the data come from the chosen distribution can be rejected.

5. skewtest 和 kurtosistest 檢驗:用於檢驗樣本的skew(偏度)和kurtosis(峰度)是否與正態分布一致,因為正態分布的偏度=0,峰度=3

偏度:偏度是樣本的標准三階中心矩。

峰度:峰度是樣本的標准四階中心矩。

6. 代碼如下

import numpy as np
from scipy import stats

a = np.random.normal(0,2,50)
b = np.linspace(0, 10, 100)

# Shapiro-Wilk test
S,p = stats.shapiro(a)
print('the shapiro test result is:',S,',',p)

# kstest(K-S檢驗)
K,p = stats.kstest(a, 'norm')
print(K,p)

# normaltest
N,p = stats.normaltest(b)
print(N,p)

# Anderson-Darling test
A,C,p = stats.anderson(b,dist='norm')
print(A,C,p)

 

參考:

https://www.cnblogs.com/yanshw/p/12677976.html

https://www.cnblogs.com/shona/p/12364216.html

https://baike.baidu.com/item/%E5%81%8F%E5%BA%A6/8626571?fr=aladdin

https://baike.baidu.com/item/%E5%B3%B0%E5%BA%A6/10840865


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM