LoG濾波器


一. LoG濾波器

        LoG 即 高斯-拉普拉斯(Laplacian of Gaussian)的縮寫。為了防止拉普拉斯濾波器計算二次微分時使圖像的噪聲更加明顯,所以先使用高斯濾波器使圖像更加平滑,再使用拉普拉斯濾波器使圖像的輪廓更加清晰。       


LoG 濾波器,s 代表高斯濾波的標准差 ↑
 

二. 實驗:LoG濾波器的實現及用於圖像邊緣檢測

        實驗中,我們先將BGR圖像轉換為灰度圖像,再給灰度圖像添加高斯噪聲,再使用LoG濾波器對圖像進行處理,最后輸出處理結果

 1 import cv2
 2 import numpy as np
 3 
 4 # Gray scale
 5 def BGR2GRAY(img):
 6     b = img[:, :, 0].copy()
 7     g = img[:, :, 1].copy()
 8     r = img[:, :, 2].copy()
 9 
10     # Gray scale
11     out = 0.2126 * r + 0.7152 * g + 0.0722 * b
12     out = out.astype(np.uint8)
13 
14     return out
15 
16 # add gaussian noise
17 def gasuss_noise(image, mean=0, var=0.001):
18     '''
19         添加高斯噪聲
20         mean : 均值
21         var : 方差
22     '''
23     image = np.array(image/255, dtype=float)
24     noise = np.random.normal(mean, var ** 0.5, image.shape)
25     out = image + noise
26     if out.min() < 0:
27         low_clip = -1.
28     else:
29         low_clip = 0.
30     out = np.clip(out, low_clip, 1.0)
31     out = np.uint8(out*255)
32     return out
33 
34 # LoG filter
35 def LoG_filter(img, K_size=5, sigma=3):
36     H, W = img.shape
37 
38     # zero padding
39     pad = K_size // 2
40     out = np.zeros((H + pad * 2, W + pad * 2), dtype=np.float)
41     out[pad: pad + H, pad: pad + W] = gray.copy().astype(np.float)
42     tmp = out.copy()
43 
44     # LoG Kernel
45     K = np.zeros((K_size, K_size), dtype=np.float)
46     for x in range(-pad, -pad + K_size):
47         for y in range(-pad, -pad + K_size):
48             K[y + pad, x + pad] = (x ** 2 + y ** 2 - sigma ** 2) * np.exp( -(x ** 2 + y ** 2) / (2 * (sigma ** 2)))
49     K /= (2 * np.pi * (sigma ** 6))
50     K /= K.sum()
51 
52     # filtering
53     for y in range(H):
54         for x in range(W):
55             out[pad + y, pad + x] = np.sum(K * tmp[y: y + K_size, x: x + K_size])
56 
57     out = np.clip(out, 0, 255)
58     out = out[pad: pad + H, pad: pad + W].astype(np.uint8)
59 
60     return out
61 
62 
63 # Read image
64 img = cv2.imread("../paojie.jpg")
65 
66 # grayscale
67 gray = BGR2GRAY(img)
68 # add gaussian noise
69 gray = gasuss_noise(gray)
70 # LoG filtering
71 out = LoG_filter(gray, K_size=5, sigma=3)
72 
73 # Save result
74 cv2.imwrite("out_g_g.jpg",gray)
75 cv2.imshow("result_g_g",gray)
76 cv2.imwrite("out.jpg", out)
77 cv2.imshow("result", out)
78 cv2.waitKey(0)
79 cv2.destroyAllWindows()

 


三. 實驗結果:


圖1:灰度圖像添加高斯噪聲后 ↑
 

圖2:LoG濾波器對圖1圖像處理后 ↑
 

        從圖像中可以觀察到,LoG濾波器不僅有效地抑制了高斯噪聲,還一定程度上增強了圖像的邊緣。


四. 參考內容:

  https://www.jianshu.com/p/c70be0cccd46


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM