垂直投影:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img=cv2.imread('C:\\Users\\Lenovo\\Desktop\\simheittf\\class4\\test1.jpg') #讀取圖片,裝換為可運算的數組
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #將BGR圖轉為灰度圖
ret,thresh1=cv2.threshold(GrayImage,130,255,cv2.THRESH_BINARY) #將圖片進行二值化(130,255)之間的點均變為255(背景)
# print(thresh1[0,0])#250 輸出[0,0]這個點的像素值 #返回值ret為閾值
# print(ret)#130
(h,w)=thresh1.shape #返回高和寬
# print(h,w)#s輸出高和寬
a = [0 for z in range(0, w)]
print(a) #a = [0,0,0,0,0,0,0,0,0,0,...,0,0]初始化一個長度為w的數組,用於記錄每一列的黑點個數
#記錄每一列的波峰
for j in range(0,w): #遍歷一列
for i in range(0,h): #遍歷一行
if thresh1[i,j]==0: #如果改點為黑點
a[j]+=1 #該列的計數器加一計數
thresh1[i,j]=255 #記錄完后將其變為白色
# print (j)
#
for j in range(0,w): #遍歷每一列
for i in range((h-a[j]),h): #從該列應該變黑的最頂部的點開始向最底部塗黑
thresh1[i,j]=0 #塗黑
#此時的thresh1便是一張圖像向垂直方向上投影的直方圖
#如果要分割字符的話,其實並不需要把這張圖給畫出來,只需要的到a=[]即可得到想要的信息
# img2 =Image.open('C:\\Users\\Lenovo\\Desktop\\simheittf\\class4\\test2.jpg')
# img2.convert('L')
# img_1 = np.array(img2)
plt.imshow(thresh1,cmap=plt.gray())
plt.show()
cv2.imshow('img',thresh1)
cv2.waitKey(0)
原圖:
垂直投影后:
水平投影:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img=cv2.imread('C:\\Users\\Lenovo\\Desktop\\simheittf\\class4\\test2.jpg')
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,thresh1=cv2.threshold(GrayImage,130,255,cv2.THRESH_BINARY)
(h,w)=thresh1.shape #返回高和寬
a = [0 for z in range(0, h)]
print(a)
for j in range(0,h):
for i in range(0,w):
if thresh1[j,i]==0:
a[j]+=1
thresh1[j,i]=255
for j in range(0,h):
for i in range(0,a[j]):
thresh1[j,i]=0
plt.imshow(thresh1,cmap=plt.gray())
plt.show()
原圖:
水平投影后: