使用pandas篩選出指定列值所對應的行


在pandas中怎么樣實現類似mysql查找語句的功能:

select * from table where column_name = some_value;

pandas中獲取數據的有以下幾種方法:

  • 布爾索引
  • 位置索引
  • 標簽索引
  • 使用API

假設數據如下:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split(),
                   'C': np.arange(8), 'D': np.arange(8) * 2})

布爾索引

該方法其實就是找出每一行中符合條件的真值(true value),如找出列A中所有值等於foo

df[df['A'] == 'foo'] # 判斷等式是否成立

位置索引

使用iloc方法,根據索引的位置來查找數據的。這個例子需要先找出符合條件的行所在位置

mask = df['A'] == 'foo'
pos = np.flatnonzero(mask)  # 返回的是array([0, 2, 4, 6, 7])
df.iloc[pos]

#常見的iloc用法
df.iloc[:3,1:3]

標簽索引

如何DataFrame的行列都是有標簽的,那么使用loc方法就非常合適了。

df.set_index('A', append=True, drop=False).xs('foo', level=1) # xs方法適用於多重索引DataFrame的數據篩選

# 更直觀點的做法
df.index=df['A'] # 將A列作為DataFrame的行索引
df.loc['foo', :]

# 使用布爾
df.loc[df['A']=='foo']

使用API

pd.DataFrame.query方法在數據量大的時候,效率比常規的方法更高效。

df.query('A=="foo"')

# 多條件
df.query('A=="foo" | A=="bar"')

數據提取不止前面提到的情況,第一個答案就給出了以下幾種常見情況:
1、篩選出列值等於標量的行,用==

df.loc[df['column_name'] == some_value]

2、篩選出列值屬於某個范圍內的行,用isin

df.loc[df['column_name'].isin(some_values)]  # some_values是可迭代對象

3、多種條件限制時使用&,&的優先級高於>=或<=,所以要注意括號的使用

df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]

4、篩選出列值不等於某個/些值的行

df.loc[df['column_name'] != 'some_value']

df.loc[~df['column_name'].isin('some_values')] #~取反

如果你覺得我的文章還可以,可以關注我的微信公眾號,查看更多實戰文章:Python爬蟲實戰之路
也可以掃描下面二維碼,添加我的微信公眾號

公眾號


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM