今天來看一下紅包的分配,參考幾年前流傳的微信紅包分配算法,今天用Golang實現一版,並測試驗證結果。
微信紅包的隨機算法是怎樣實現的?https://www.zhihu.com/question/22625187
紅包核心算法
分配:紅包里的金額怎么算?為什么出現各個紅包金額相差很大?
答:隨機,額度在0.01和(剩余平均值*2)之間
每次拆紅包,額度范圍在【0.01 ~ 剩余平均值*2】之間,這是很妙的一個設計。
比如發100元,共發10個紅包,那么平均值10元,第一個拆出來的紅包的額度在0.01元~20元之間波動,可以確保不會一個人把紅包全領了的情況,因為最大就是剩余平均值的2倍。
比如發0.1元,共發10個紅包,每個0.01元,這種就不用隨機算法了,直接平均分配吧。
No bb, show your code!
設計紅包結構體
//reward.go
//紅包
type Reward struct {
Count int //個數
Money int //總金額(分)
RemainCount int //剩余個數
RemainMoney int //剩余金額(分)
BestMoney int //手氣最佳金額
BestMoneyIndex int //手氣最佳序號
MoneyList []int //拆分列表
}
- 我這里用int整型做金額計算,可以避免浮點數精度問題,展示的時候除100,就是元單位了。
核心紅包隨機分配算法
//reward.go
// 搶紅包
func GrabReward(reward *Reward) int {
if reward.RemainCount <= 0 {
panic("RemainCount <= 0")
}
//最后一個
if reward.RemainCount - 1 == 0 {
money := reward.RemainMoney
reward.RemainCount = 0
reward.RemainMoney = 0
return money
}`
//是否可以直接0.01
if (reward.RemainMoney / reward.RemainCount) == 1 {
money := 1
reward.RemainMoney -= money
reward.RemainCount--
return money
}
//紅包算法參考 https://www.zhihu.com/question/22625187
//最大可領金額 = 剩余金額的平均值x2 = (剩余金額 / 剩余數量) * 2
//領取金額范圍 = 0.01 ~ 最大可領金額
maxMoney := int(reward.RemainMoney / reward.RemainCount) * 2
rand.Seed(time.Now().UnixNano())
money := rand.Intn(maxMoney)
for money == 0 {
//防止零
money = rand.Intn(maxMoney)
}
reward.RemainMoney -= money
//防止剩余金額負數
if reward.RemainMoney < 0 {
money += reward.RemainMoney
reward.RemainMoney = 0
reward.RemainCount = 0
} else {
reward.RemainCount--
}
return money
}
分配算法完成后,驗證一下,用單元測試的辦法驗證
//reward_test.go
func TestGrabReward2(t *testing.T) {
chanReward := make(chan Reward)
rand.Seed(time.Now().UnixNano())
go func(){
//隨機生成1000個紅包
for i:=0; i < 1000; i++ {
//隨機紅包個數 1~50
count := rand.Intn(50) + 1
//隨機紅包總金額 1~100元
money := rand.Intn(10000) + 100
avg := money / count
for avg == 0 {
//保證金額足夠分配
count = rand.Intn(50) + 1
money = rand.Intn(10000) + 100
avg = money / count
}
reward := Reward{Count: count, Money: money,
RemainCount: count, RemainMoney: money}
chanReward <- reward
}
close(chanReward)
}()
//打印拆包列表,帶手氣最佳
for reward := range chanReward {
for i := 0; reward.RemainCount > 0; i++ {
money := GrabReward(&reward)
if money > reward.BestMoney {
reward.BestMoneyIndex, reward.BestMoney = i, money
}
reward.MoneyList = append(reward.MoneyList, money)
}
t.Logf("總個數:%d, 總金額:%.2f", reward.Count, float32(reward.Money)/100)
for i := range reward.MoneyList {
money := reward.MoneyList[i]
isBest := ""
if reward.BestMoneyIndex == i {
isBest = " ** 手氣最佳"
}
t.Logf("money_%d : (%.2f)%s\n", i+1, float32(money)/100, isBest)
}
t.Log("-------")
}
}
運行結果
reward_test.go:106: 總個數:7, 總金額:86.59
reward_test.go:113: money_1 : (16.29)
reward_test.go:113: money_2 : (4.93)
reward_test.go:113: money_3 : (22.89) ** 手氣最佳
reward_test.go:113: money_4 : (3.17)
reward_test.go:113: money_5 : (20.51)
reward_test.go:113: money_6 : (0.12)
reward_test.go:113: money_7 : (18.68)
reward_test.go:115: -------
reward_test.go:106: 總個數:10, 總金額:53.79
reward_test.go:113: money_1 : (3.56)
reward_test.go:113: money_2 : (6.39)
reward_test.go:113: money_3 : (0.36)
reward_test.go:113: money_4 : (2.60)
reward_test.go:113: money_5 : (10.11)
reward_test.go:113: money_6 : (5.76)
reward_test.go:113: money_7 : (2.84)
reward_test.go:113: money_8 : (14.04) ** 手氣最佳
reward_test.go:113: money_9 : (1.95)
reward_test.go:113: money_10 : (6.18)
reward_test.go:115: -------
性能測試
//性能測試
func BenchmarkGrabReward(b *testing.B) {
chanReward := make(chan *Reward, b.N)
rand.Seed(time.Now().UnixNano())
go func(){
//隨機生成紅包
for i:=0; i < b.N; i++ {
//隨機紅包個數 1~50
count := rand.Intn(50) + 1
//隨機紅包總金額 1~100元
money := rand.Intn(10000) + 100
avg := money / count
for avg == 0 {
//保證金額足夠分配
count = rand.Intn(50) + 1
money = rand.Intn(10000) + 100
avg = money / count
}
reward := Reward{Count: count, Money: money,
RemainCount: count, RemainMoney: money}
chanReward <- &reward
}
close(chanReward)
}()
//打印拆包列表,帶手氣最佳
for reward := range chanReward {
for i := 0; reward.RemainCount > 0; i++ {
money := GrabReward(reward)
if money > reward.BestMoney {
reward.BestMoneyIndex, reward.BestMoney = i, money
}
reward.MoneyList = append(reward.MoneyList, money)
}
_ = fmt.Sprintf("總個數:%d, 總金額:%.2f", reward.Count, float32(reward.Money)/100)
for i := range reward.MoneyList {
money := reward.MoneyList[i]
isBest := ""
if reward.BestMoneyIndex == i {
isBest = " ** 手氣最佳"
}
_ = fmt.Sprintf("money_%d : (%.2f)%s\n", i+1, float32(money)/100, isBest)
}
}
}
性能測試結果
BenchmarkGrabReward-8 4461 244842 ns/op
//4核8線的CPU運運行4461次,平均每次244842納秒=0.244842毫秒
性能可以說是很優秀的,這是因為這個測試是純內存計算,沒有網絡IO,沒有存儲寫盤,純粹是為了驗證算法,所以性能是很高的。
完成!