完整代碼:
import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt import torch.optim as optim #生成數據 #隨機取100個-1到1之間的數,利用unsqueeze將一維變成二維 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = x.pow(2) + 0.2*torch.rand(x.size()) #神經網絡只能接受Variable的數 x,y = Variable(x),Variable(y) #繪制圖像 plt.scatter(x.data.numpy(), y.data.numpy()) #plt.show() #定義網絡 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.predict = torch.nn.Linear(n_hidden,n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x net = Net(1, 10, 1) #print(net) #優化 optimizer = optim.SGD(net.parameters(), lr=0.5) loss_func = torch.nn.MSELoss() #可視化 plt.ion() #plt.show() for t in range(100): prediction = net(x) loss = loss_func(prediction, y) #預測值和真實值 optimizer.zero_grad() loss.backward() optimizer.step() #可視化 if t % 5 == 0: plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) plt.text(0.5, 0, 'Loss=%.4f' % loss.item(), fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1) plt.ioff() plt.show()
在我運行代碼是,出現過以下報錯: