darknet-yolov3 burn_in learning_rate policy


darknet-yolov3中的learning_rate是一個超參數,調參時可通過調節該參數使模型收斂到一個較好的狀態。

在cfg配置中的呈現如下圖:

我這里隨便設了一個值。

接下來說一下burn_in和policy.

這兩者在代碼中的呈現如下所示:

float get_current_rate(network *net)
{
    size_t batch_num = get_current_batch(net);
    int i;
    float rate;
    if (batch_num < net->burn_in)  //當batch_num小於burn_in時,返回如下learning_rate
      return net->learning_rate * pow((float)batch_num / net->burn_in, net->power);   
    switch (net->policy) {//當大於burn_in時,按如下方式,原配值中給的是STEPS
        case CONSTANT:
            return net->learning_rate;
        case STEP:
            return net->learning_rate * pow(net->scale, batch_num/net->step);
        case STEPS:
            rate = net->learning_rate;     for(i = 0; i < net->num_steps; ++i){
                if(net->steps[i] > batch_num) return rate;
                rate *= net->scales[i];
            }
            return rate;
        case EXP:
            return net->learning_rate * pow(net->gamma, batch_num);
        case POLY:
            return net->learning_rate * pow(1 - (float)batch_num / net->max_batches, net->power);
        case RANDOM:
            return net->learning_rate * pow(rand_uniform(0,1), net->power);
        case SIG:
            return net->learning_rate * (1./(1.+exp(net->gamma*(batch_num - net->step))));
        default:
            fprintf(stderr, "Policy is weird!\n");
            return net->learning_rate;
    }
}

這里我做了一些調整。

調整依據是:發現自己設置的學習率和burn_in結束時的學習率總是有很大差異,造成loss變化出現停滯,或者劇烈抖動。

調整辦法:讓steps的起始學習率=burn_in結束時的學習率。

實現如下:

float last_rate;
float get_current_rate(network *net)
{
    size_t batch_num = get_current_batch(net);
    int i;
    float rate;
    if (batch_num < net->burn_in)
    {
      /******************************************************/
      last_rate = net->learning_rate * pow((float)batch_num / net->burn_in, net->power);
      /*****************************************************/
      return net->learning_rate * pow((float)batch_num / net->burn_in, net->power);
    }
    switch (net->policy) {
        case CONSTANT:
            return net->learning_rate;
        case STEP:
            return net->learning_rate * pow(net->scale, batch_num/net->step);
        case STEPS:
            //rate = net->learning_rate;
           rate = last_rate;
            for(i = 0; i < net->num_steps; ++i){
                if(net->steps[i] > batch_num) return rate;
                rate *= net->scales[i];
            }
            return rate;
        case EXP:
            return net->learning_rate * pow(net->gamma, batch_num);
        case POLY:
            return net->learning_rate * pow(1 - (float)batch_num / net->max_batches, net->power);
        case RANDOM:
            return net->learning_rate * pow(rand_uniform(0,1), net->power);
        case SIG:
            return net->learning_rate * (1./(1.+exp(net->gamma*(batch_num - net->step))));
        default:
            fprintf(stderr, "Policy is weird!\n");
            return net->learning_rate;
    }
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM