線性方程組的迭代解法——最速下降法


  1.代碼

%%最速下降法(用於求解正定對稱方程組)
%%線性方程組M*X = b,M是方陣,X0是初始解向量,epsilon是控制精度
function TSDM = The_steepest_descent_method(M,b,X0,epsilon)
m = size(M);up = 1000;e = floor(abs(log(epsilon)));
X(:,1) = X0;
r(:,1) = b-M*X0;
for k = 1:up
    alpha = Inner_product(r(:,k),r(:,k))/Inner_product(M*r(:,k),r(:,k));
    X(:,k+1) = X(:,k)+alpha*r(:,k);
    r(:,k+1) = b-M*X(:,k+1);
    X_delta(:,k) = X(:,k+1)-X(:,k);
    if sqrt(Inner_product(X_delta(:,k),M*X_delta(:,k))) < epsilon
        break;
    end
end
disp('迭代次數為:');
k-1
TSDM = vpa(X(:,k),e);
    %%內積
    function IP = Inner_product(M1,M2)
        MAX = max(size(M1));
        sum = 0;
        for i = 1:MAX
            sum = sum+M1(i)*M2(i);
        end
        IP = sum;
    end
end

  2.例子

clear all
clc
for i = 1:4
    for j = 1:4
        if i == j
            M(i,j) = 2.1;
        else 
            M(i,j) = 1.5;
        end
    end
end
b = [1 2 3 4]';
X0 = [1 1 1 1]';
epsilon = 1e-4;

S = The_steepest_descent_method(M,b,X0,epsilon)

M\b

  結果為

迭代次數為:
ans =
    21
S =
  -2.12110743
 -0.454511872
   1.21208369
   2.87867925
ans =
   -2.1212
   -0.4545
    1.2121
    2.8788
>> 

  

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM