使用LaTex可以生成復雜的數學公式。
舉例:
其LaTex語法如下: LaTex具有很強的可讀性,例如 sum 表示求和,多練練就能掌握。
\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}
LaTex目前已經成為“數理化”的行業的標准語法。因此,你不用擔心學會了在其他系統里無法使用。
在word里,你也可以用LaTex語法寫公式。
對於部分公式,需要注意:換行。這是因為,部分公式行較高,如果采用行內元素,可能顯示錯誤,請勾選“換行”
\frac{\partial u}{\partial t} = h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \
舉例2:
\begin{pmatrix}1&2\\3&4\\ \end{pmatrix}
\begin{bmatrix}1&2\\3&4\\ \end{bmatrix}
\begin{Bmatrix}1&2\\3&4\\ \end{Bmatrix}
\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}
\begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots& \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{pmatrix}
\begin{pmatrix} a & b\\ c & d\\ \hline 1 & 0\\ 0 & 1 \end{pmatrix}
\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\ & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\ & = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\ & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right) \end{align}
\begin{align} f(x)&=\left(x^3\right)+\left(x^3+x^2+x^1\right)+\left(x^3+x^2\right)\\ f'(x)&=\left(3x^2+2x+1\right) + \left(3x^2+2x\right)\\ f''(x)&=\left(6x+2\right)\\ \end{align}
% outer vertical array of arrays \begin{array}{c} % inner horizontal array of arrays \begin{array}{cc} % inner array of minimum values \begin{array}{c|cccc} \text{min} & 0 & 1 & 2 & 3\\ \hline 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 1 & 1\\ 2 & 0 & 1 & 2 & 2\\ 3 & 0 & 1 & 2 & 3 \end{array} & % inner array of maximum values \begin{array}{c|cccc} \text{max}&0&1&2&3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 1 & 2 & 3\\ 2 & 2 & 2 & 2 & 3\\ 3 & 3 & 3 & 3 & 3 \end{array} \end{array} \\ % inner array of delta values \begin{array}{c|cccc} \Delta&0&1&2&3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 0 & 1 & 2\\ 2 & 2 & 1 & 0 & 1\\ 3 & 3 & 2 & 1 & 0 \end{array} \end{array}
\left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right.
\left\{ \begin{array}{l} 0 = c_x-a_{x0}-d_{x0}\dfrac{(c_x-a_{x0})\cdot d_{x0}}{\|d_{x0}\|^2} + c_x-a_{x1}-d_{x1}\dfrac{(c_x-a_{x1})\cdot d_{x1}}{\|d_{x1}\|^2} \\[2ex] 0 = c_y-a_{y0}-d_{y0}\dfrac{(c_y-a_{y0})\cdot d_{y0}}{\|d_{y0}\|^2} + c_y-a_{y1}-d_{y1}\dfrac{(c_y-a_{y1})\cdot d_{y1}}{\|d_{y1}\|^2} \end{array} \right.