Chapter 6
6.1 Inner Products and Norms
Definition (inner product).
Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted \(⟨x,y⟩\), such that for all x, y, and z in V and all c in F, the following hold:
(a) \(⟨x + z,y⟩ = ⟨x,y⟩ + ⟨z,y⟩.\)
(b) $⟨cx,y⟩=c⟨x,y⟩. $
(c) \(\overline{⟨x, y⟩} = ⟨y, x⟩,\) where the bar denotes complex conjugation.
(d) \(⟨x,x⟩>0\) if \(x \neq 0\).
Definition (conjugate transpose).
Let \(A ∈ M_{m×n}(F)\). We define the conjugate transpose or adjoint of A to be the \(n×m\) matrix \(A^∗\) such that \((A^∗)_{ij} = \overline{A_{ji}}\) for all \(i,j\).
Definition (inner product space).
A vector space \(V\) over \(F\) endowed with a specific inner product is called an inner product space. If \(F = C\), we call V a complex inner product space, whereas if \(F = R\), we call \(V\) a real inner product space.
Definition of some inner products.
Frobenius Inner product: \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right) \text { for } A, B \in M_{n\times n}(F).\)
實際上就是\(\langle A, B\rangle=\sum_{i}\sum_{j}A_{ij}\overline{B_{ij}}\)。
Standard inner product on \(F^n\): \(x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) and \(y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\) in \(\mathrm{F}^{n}\), \(\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\).
實際上和Frobenius inner product是一個東西。
H of continuous complex-valued functions defined on the interval \([0, 2π]\): \(\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t\).
Theorem 6.1.
Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F , the following statements are true.
(a) \(⟨x,y + z⟩\) = \(⟨x,y⟩\) + \(⟨x,z⟩\).
(b) \(⟨x,cy⟩=\overline c⟨x,y⟩\).
(c) \(⟨x,0⟩ = ⟨0,x⟩ = 0\).
(d) \(⟨x,x⟩=0\) if and only if \(x=0\).
(e) If \(⟨x,y⟩=⟨x,z⟩\) for all \(x∈V\), then \(y=z\).
性質(a)和(b)統稱conjugate linear,注意不要漏寫共軛。
Definition (norm).
Let \(V\) be an inner product space. For \(x ∈ V\), we define the norm or length of \(x\) by \(\|x\|= ⟨x, x⟩\).
Theorem 6.2.
Let \(V\) be an inner product space over \(F\). Then for all \(x, y ∈ V\) and \(c ∈ F\) , the following statements are true.
(a) \(\|cx\|= |c|·\|x\|.\)
(b) \(\|x\|=0\) if and only if \(x=0\). In any case, \(\|x\|≥0\).
(c) (Cauchy–Schwarz Inequality)\(|⟨x,y⟩|≤\|x\|·\|y\|\).
(d) (Triangle Inequality) \(\|x + y\| ≤ \|x\| + \|y\|\).
證明
(c)
若 \(y=0\)顯然成立,假設\(y \neq 0\)。對於任意\(c \in F\),有
\[\begin{aligned} 0 \leq\|x-c y\|^{2} &=\langle x-c y, x-c y\rangle=\langle x, x-c y\rangle- c\langle y, x-c y\rangle \\ &=\langle x, x\rangle-\bar{c}\langle x, y\rangle- c\langle y, x\rangle+ c \bar{c}\langle y, y\rangle \end{aligned} \]令\(c=\frac{\langle x, y\rangle}{\langle y, y\rangle}\),則有\(0 \leq\langle x, x\rangle-\frac{|\langle x, y\rangle|^{2}}{\langle y, y\rangle}=\|x\|^{2}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}\),所證不等式成立。
(d)
\[\begin{aligned}\|x+y\|^{2} &=\langle x+y, x+y\rangle=\langle x, x\rangle+\langle y, x\rangle+\langle x, y\rangle+\langle y, y\rangle \\ &=\|x\|^{2}+2 \Re\langle x, y\rangle+\|y\|^{2} \\ & \leq\|x\|^{2}+2|\langle x, y\rangle|+\|y\|^{2} \\ & \leq\|x\|^{2}+2\|x\| \cdot\|y\|+\|y\|^{2} \\ &=(\|x\|+\|y\|)^{2} \end{aligned} \]
Definition (orthogonal, unit vector, orthonormal).
Let \(V\) be an inner product space. Vectors \(x\) and \(y\) in \(V\) are orthogonal (perpendicular) if \(⟨x, y⟩ = 0\).
A subset \(S\) of \(V\) is orthogonal if any two distinct vectors in \(S\) are orthogonal.
A vector \(x\) in \(V\) is a unit vector if \(\|x\| = 1\).
Finally, a subset \(S\) of \(V\) is orthonormal if \(S\) is orthogonal and consists entirely of unit vectors.
6.2 The Gram–Schmidt Process and Orthogonal Complements
Definition (orthonormal basis).
Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis that is orthonormal.
Theorem 6.3.
Let V be an inner product space and \(S = {v_1, v_2, . . . , v_k}\) be an orthogonal subset of V consisting of nonzero vectors. If \(y ∈ span(S)\), then
證明:設\(y = \sum_{i=1}^ka_iv_i\),寫出\(\langle y, v_i\rangle\)表達式即可得出。
Corollary 1.
If, in addition to the hypotheses of Theorem 6.3, S is orthonormal and y ∈ span(S), then
Corollary 2.
Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent.
Theorem 6.4. (the Gram–Schmidt process)
Let V be an inner product space and \(S = \{w_1, w_2, \ldots, w_n\}\) be a linearly independent subset of V. Define \(S′ = \{v_1, v_2, \ldots, v_n\}\), where \(v_1 = w_1\) and
Then S′ is an orthogonal set of nonzero vectors such that span(S′) = span(S).
Theorem 6.5.
Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis \(\beta\). Furthermore, if \(\beta = \{v_1,v_2,...,v_n\}\) and x ∈ V, then
證明:用 Gram–Schmidt 把 orthogonal basis 構造出來,再 normalize 即可。至於\(x=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle v_{i}\) 實際上就是 Thereom 6.3 Corollary 1.
Corollary.
Let V be a finite-dimensional inner product space with an orthonormal basis $ = \beta = {v_1, v_2, \ldots, v_n}$. Let T be a linear operator on V, and let A = \([T]_\beta\). Then for any i and j, $$Aij = \langle T(vj),vi\rangle.$$
Definition (Fourier coefficients).
Let $\beta $ be an orthonormal subset (possibly infinite) of an inner product space V, and let \(x ∈ V\). We define the Fourier coefficients of \(x\) relative to \(\beta\) to be the scalars \(⟨x, y⟩\), where \(y ∈ β\).
Definition (orthogonal complement).
Let S be a nonempty subset of an inner product space V. We define \(S^\perp\) to be the set of all vectors in V that are orthogonal to every vector in S; that is, \(S^{\perp}=\{x \in V:\langle x, y\rangle= 0 \text { for all } y \in S\}\). The set \(s^\perp\) is called the orthogonal complement of S.
注意
S可以是任意集合,不一定是 subspace;
若\(0 \in S\), \(S\cap S^\perp = \{0\}\); 否則\(S\cap S^\perp = \O\).
Theorem 6.6.
Let \(W\) be a finite-dimensional subspace of an inner product space \(V\), and let \(y∈V\). Then there exist unique vectors \(u∈W\) and \(z\in W^\perp\) such that \(y=u+z\). Furthermore, if\({v_1,v_2,\ldots,v_k}\)is an orthonormal basis for \(W\), then
證明:直接令\(u=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}\),令\(z = y - u\),只需證\(z\in W^\perp\). 對任意 \(j\), 有
\[\begin{aligned}\left\langle z, v_{j}\right\rangle &=\left\langle\left(y-\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}\right), v_{j}\right\rangle=\left\langle y, v_{j}\right\rangle-\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle\left\langle v_{i}, v_{j}\right\rangle \\ &=\left\langle y, v_{j}\right\rangle-\left\langle y, v_{j}\right\rangle= 0 \end{aligned} \]下證 unique. 假設\(y = u + z = u' + z', u' \in W, z' \in W^\perp\), 則\(u - u'\in W, z - z' \in W^\perp\), \(u - u' = z - z' \in W \cap W^\perp = \{0\}.\)
Corollary (orthogonal projection).
The vector \(u = \sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}\) is the unique vector in \(W\) that is “closest” to \(y\); that is, for any \(x ∈ W\),$ |y − x| ≥ |y − u|$, and this inequality is an equality if and only if \(x = u\). \(u\) is called the orthogonal projection of \(y\) on \(W\).
證明:
注意到\(\langle u-x, z\rangle = 0\)
\(\|y-x\|^2 = \|u + z - x\|^2 = \|u-x\|^2 + \|z\|^2 \ge \|z\|^2\)
Theorem 6.7.
Suppose that \(S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\) is an orthonormal set in an n-dimensional inner product space \(V\). Then
(a) S can be extended to an orthonormal basis \(\{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n\}\) for \(V\).
(b) If \(W = span(S)\), then \(S_1 = \{v_{k+1}, v_{k+2}, \ldots, v_n\}\) is an orthonormal basis for \(W^\perp\).
(c) If \(W\) is any subspace of \(V\), then \(dim(V) = dim(W) + dim(W^\perp)\).
證明:
(a) 先 extend,然后用 Gram–Schmidt process.
(b) 顯然\(S_1 \subseteq W^\perp\), 只需證\(span(S_1) = W^\perp\). \(\forall x = \sum_{i = 1}^{n}a_iv_i \in W^\perp, \langle x, v_i\rangle = 0\) for \(1 \le i \le k\), 所以\(x = \sum_{i = k + 1}^{n}a_iv_i \in span(S_1).\)
(c) 由(b)顯然。
6.3 The Adjoint of A Linear Operator
Theorem 6.8.
Let \(V\) be a finite-dimensional inner product space over \(F\), and let \(g: V → F\) be a linear transformation. Then there exists a unique vector \(y ∈ V\) such that \(g(x) = ⟨x, y⟩\) for all \(x ∈ V\).
Let \(\beta=\left\{v_{1}, v_{2}, \dots, v_{n}\right\}\) be an orthonormal basis for V, then
證明:
先證存在,直接令\(y = \sum_{i=1}^n\overline{g(v_i)}v_i,\) 可以計算出\(\forall 1 \le j \le n, \langle v_j, y\rangle = \langle v_j, \sum_{i=1}^n\overline{g(v_i)}v_i\rangle = \sum_{i=1}^n g(v_i)\langle v_j, v_i\rangle = g(v_j).\) 根據\(g\)是 linear transformation, \(g(x) = \langle x, y \rangle.\)
再證唯一,假設\(\forall x\)有\(\langle x, y'\rangle = g(x) = \langle x, y\rangle\),那么由於\(x\)的任意性,\(y' = y\)(Theorem 6.1 (e))。
Theorem 6.8 為 \(T^*\)的定義做了准備工作,只有證明了\(y\)的唯一性,才能定義出一個映射。
Theorem 6.9 (Definition of adjoint).
Let \(V\) be a finite-dimensional inner product space, and let \(T\) be a linear operator on \(V\). Then there exists a unique function \(T^*: V → V\) such that \(⟨T(x), y⟩ = ⟨x, T^*(y)⟩\) for all \(x, y ∈ V\). Furthermore, \(T^*\) is linear. \(T^*\) is called the adjoint of \(T\).
證明:
先證唯一存在,\(\forall y \in V\), 定義\(g(x) = \langle T(x), y \rangle\), 則根據 Theorem 6.9, 存在唯一\(z \in V\)使得\(\forall x \in V\)有\(g(x) = \langle x, z \rangle\), 定義\(T^*(y) = z\), 即有\(\langle T(x), y\rangle = \langle x, T^*(y)\rangle.\)
然后證linear,這個根據 inner product 的 conjugate linear 性質可以容易地寫出。
Theorem 6.10.
Let V be a finite-dimensional inner product space, and let \(β\) be an orthonormal basis for \(V\). If \(T\) is a linear operator on \(V\), then \(\left[\mathrm{T}^{*}\right]_{\beta}=[\mathrm{T}]_{\beta}^{*}.\)
證明: \(B_{i j}=\left\langle\mathrm{T}^{*}\left(v_{j}\right), v_{i}\right\rangle=\overline{\left\langle v_{i}, \mathrm{T}^{*}\left(v_{j}\right)\right\rangle}=\overline{\left\langle\mathrm{T}\left(v_{i}\right), v_{j}\right\rangle}=\overline{A_{j i}}=\left(A^{*}\right)_{i j}\)
Corollary.
Let \(A\) be an \(n × n\) matrix. Then \(L_{A^*} = (L_A)^*\).
Theorem 6.11.
Let \(V\) be an inner product space, and let \(T\) and \(U\) be linear operators on \(V\). Then
Corollary.
以上對 linear operator 的性質,對矩陣也成立。
Let \(A\) and \(B\) be \(n × n\) matrices. Then
這些性質的證明既可以轉化為左乘、用linear operator的性質做,也可以直接用矩陣adjoint的定義。
Lemma 1.
Let \(A \in \mathbb{M}_{m \times n}(F), x \in F^{n},\) and \(y \in F^{m}\). Then
證明:直接用標准$ F^n \(向量內積的定義。\)\(\langle A x, y\rangle_{m}=y^{*}(A x)=\left(y^{*} A\right) x=\left(A^{*} y\right)^{*} x=\left\langle x, A^{*} y\right\rangle_{n}.\)$
Lemma 2.
Let \(A \in \mathbb{M}_{m \times n}(F)\). Then \(rank(A^*A) = rank(A)\).
證明: 可證\(N(L_{A^*A}) = N(L_A)\),即\(A^*Ax = 0 \Leftrightarrow Ax = 0.\) 右推左顯然成立,下證左推右。若\(A^*Ax = 0\), 則$0 = x^A^Ax = (Ax)^*Ax = \langle Ax, Ax \rangle, $ 所以\(Ax = 0\).
Corollary.
If \(A\) is an \(m \times n\) matrix such that \(rank(A) = n\), then \(A^*A\) is invertible.
Theorem 6.12 (Least Squares Approximation,最小二乘法) .
Let \(A ∈ M_{m×n} (F)\) and \(y ∈ F^m\) . Then there exists \(x_0 ∈ F^n\) such that \((A^*A)x_0 = A^*y\) and \(∥Ax_0 −y∥ ≤ ∥Ax−y∥\) for all \(x ∈ F^n\). Furthermore, if \(rank(A) = n\), then \(x_0 = (A^*A)^{−1}A^*y\).
證明:
\(Ax \in R(A)\), 而在\(R(A)\)中存在唯一的離\(y\)最近的向量\(Ax_0\),這里的\(x_0\)即為所求。由 Theorem 6.6, \(Ax_0 - y \in R(A)^\perp.\) 現在求\(R(A)^\perp\)。若\(z \in R(A)^\perp,\) \(\forall x \in V,\) 有\(\langle A^*z, x \rangle = \langle z, Ax \rangle = 0\)。由於\(x\)任意性,\(A^*z = 0\),即\( z \in N(A^*).\) 反過來亦可推出若\(z \in N(A^*)\)則有\(z \in R(A)^\perp.\) 所以\(R(A)^\perp = N(A^*).\) 因為\(Ax_0 - y \in R(A)^\perp = N(A^*)\),所以有\(A^*(Ax_0 - y) = 0\), 若\(rank(A) = n\),則有\(x_0 = (A^*A)^{−1}A^*y.\)
Theorem 6.13 (Minimal Solution to Systems of Linear Equations,線性方程組的最小解)
A solution s to \(Ax = b\) is called a minimal solution if \(∥s∥ ≤ ∥u∥\) for all other solutions \(u\).
Let \(A \in \mathbb{M}_{m \times n}(F)\) and \(b ∈ F^m\). Suppose that \(Ax = b\) is consistent. Then the following statements are true.
(a) There exists exactly one minimal solution \(s\) of \(Ax = b\), and \(s ∈ R(L_{A^*})\).
(b) The vector s is the only solution to \(Ax = b\) that lies in \(R(L_{A^*})\); that is, if u satisfies \(\left(A A^{*}\right) u=b\), then \(s = A^*u\).
證明(a):對於任意解\(x\),可將\(x\)分解為\(x = s + y\),其中\(y \in N(A), s \in N(A)^\perp = R(A^*).\) \(Ax = As + Ay = As + 0 = As\), 所以\(s\)也是\(Ax = b\)的解;而由於\(\langle s, y \rangle = 0\),有\(\|x\| = \|s + y\| = \sqrt{\|s\|^2 + \|y\|^2} \ge \|s\|\),當且僅當\(y = 0\)即\(x = s\)時取等,所以s是唯一最小解.
證明(b):假設\(R(L_{A^*})\)中存在另一解\(v\),則\(s - v \in N(A) \cap N(A)^\perp = {0}\), 所以\(s =v\).
6.4 Normal And Self-Adjoint Operators
Lemma.
Let \(T\) be a linear operator on a finite-dimensional inner product space \(V\). If \(T\) has an eigenvector, then so does \(T^*\).
證明:設\(v\)是\(T\)的y一個eigenvector,則\(0 = \langle0, x\rangle = \langle(T - \lambda I)(v), x\rangle = \langle v, (T - \lambda I)^*(x)\rangle = \langle v, (T^*-\overline\lambda I)(x)\rangle\)
所以\(R(T^*-\overline\lambda I) = {v}^\perp \subsetneqq V\), 則\(N(T^*-\overline\lambda I) \neq\{0\}\)中的任意vector都是對應eigenvalue為\(\overline\lambda\)的eigenvector。
Theorem 6.14 (Schur).
Let \(T\) be a linear operator on a finite-dimensional inner product space \(V\). Suppose that the characteristic polynomial of \(T\) splits. Then there exists an orthonormal basis \(β\) for \(V\) such that the matrix \([T]_β\) is upper triangular.
證明:
用數學歸納法。設\(dim(V) = n\),\(n=1\)時顯然成立。假設對\(n-1\)成立,則對n,由於特征多項式split,\(T\)有至少一個eigenvalue,則\(T^*\)也有至少一個eigenvalue,設為\(\lambda\),它對應至少一個unit vector \(z\). 設\(W = span(\{z\})\),下證\(W^\perp\)是T-invariant.
\(\forall y \in W^\perp, x = cz \in W\) where \(c \in F\),\(\langle T(y), x = cz \rangle = \langle y, T^*(cz) \rangle = \overline{c\lambda}\langle y, z \rangle = 0.\) 所以\(T(y) \in W^\perp.\) 所以\(W^\perp\)是T-invariant,可以定義\(T_{W^\perp}\),而\(dim(W^\perp) = n - 1\),應用假設可得存在一個\(W^\perp\)的orthonormal basis \(\gamma\) 使得\([T_{W^\perp}]_\gamma\)是上三角矩陣,顯然\(z\)垂直於\(\gamma\)中的每個向量,令\(\beta = \gamma \cup \{z\}\),則\(\beta\)是orthonormal basis, 且\([T]_β\)也是上三角矩陣。
Definitions (normal).
Let \(V\) be an inner product space, and let \(T\) be a linear operator on \(V\). We say that \(T\) is normal if \(TT^*= T^*T\). An \(n×n\) real or complex matrix \(A\) is normal if \(AA^* = A^*A.\)
Theorem 6.15.
Let \(V\) be an inner product space, and let \(T\) be a normal operator on \(V\). Then the following statements are true.
(a) \(\|\mathrm{T}(x)\|=\left\|\mathrm{T}^{*}(x)\right\|\) for all \(x \in V\).
(b) \(T−cI\) isnormal for every \(c∈F\).
(c) If \(x\) is an eigenvector of \(T\), then \(x\) is also an eigenvector of \(T^*\). In fact, if \(T(x) = λx\), then \(T^*(x) = \overline λx\).
(d) If \(λ_1\) and \(λ_2\) are distinct eigenvalues of \(T\) with corresponding eigenvectors \(x_1\) and \(x_2\), then \(x_1\) and \(x_2\) are orthogonal.
證明:
(c) 令 \(U = T - \lambda I\),則\(U^* = T^* - \overline\lambda I\),且根據(b),\(U\)也normal。根據(a)有\(0 \|U(x)\| = \|U^*(x)\| = \|T^*(x) - \overline\lambda x\|\)。
(d) \(\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\left\langle\lambda_{1} x_{1}, x_{2}\right\rangle=\left\langle T\left(x_{1}\right), x_{2}\right\rangle=\left\langle x_{1}, T^{*}\left(x_{2}\right)\right\rangle =\left\langle x_{1}, \overline{\lambda_{2}} x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle\)
由於\(\lambda_1 \neq \lambda_2\), 有\(\left\langle x_{1}, x_{2}\right\rangle=0\).
Theorem 6.16.
Let \(T\) be a linear operator on a finite-dimensional complex inner product space \(V\). Then \(T\) is normal if and only if there exists an orthonormal basis for \(V\) consisting of eigenvectors of T.
證明:
假設\(T\) normal,則根據代數基本定理,\(T\)的特征多項式在復數域上split;根據Schur定理,存在一個\(V\)的 orthonormal basis \(\beta = \{v_1, v_2, \ldots, v_n\}\)使得\([T]_\beta\)是上三角矩陣。則\(v_1\)一定是eigenvalue。假設\(v_1, v_2, \ldots, v_{k-1}\) 都是eigenvalue,那么\(1 \le j < k\), \(A_{jk} = \langle T(v_k) ,v_j\rangle = \langle v_k, T^*(v_j)\rangle = \langle v_k, \overline{\lambda_j} v_j\rangle = 0\),所以\(v_k\)也是eigenvalue。
假設存在全是eigenvector的orthonormal basis \(\beta\),則\([T]_{\beta}\)和\([T^*]_\beta\)都是對角矩陣,滿足交換律,所以\(T\) is normal.
注意:
對於復數域上的向量空間,normal => diagonalizable;
然而對於實數域上的向量空間則不一定,例如旋轉矩陣。
Definition (self-adjoint).
Let T be a linear operator on an inner product space V. We say that T is self-adjoint (Hermitian) if T = \(T^*\). An \(n × n\) real or complex matrix \(A\) is self-adjoint (Hermitian) if \(A = A^*\).
Lemma.
Let T be a self-adjoint operator on a finite-dimensional inner product space V. Then
(a) Every eigenvalue of T is real.
(b) Suppose that V is a real inner product space. Then the characteristic polynomial of T splits.
證明:
(a) \(\lambda x = T(x) = T^*(x) = \overline\lambda x\)
Theorem 6.17.
Let \(T\) be a linear operator on a finite-dimensional real inner product space $$V$$. Then \(T\) is self-adjoint if and only if there exists an orthonormal basis \(β\) for \(V\) consisting of eigenvectors of \(T\).
證明:假設T是self-adjoint, 根據Shur定理,找一組orthonormal basis \(\beta\)使\([T]_\beta = A\)是上三角矩陣,而\(A^* = [T]^*_\beta = [T^*]_\beta = [T]_\beta = A\). 所以\(A^*\)也是上三角矩陣,所以A是對角矩陣。
6.5 Unitary & Orthogonal Operators and their Matrices
Definitions (unitary/orthogonal operator, isometry).
If \(\|T(x)\| = \|x\|\) for all \(x \in V\), we call T a unitary operator if \(F = C\) and an orthogonal operator if \(F = R\).
In the infinite-dimensional case, an operator satisfying \(\|T(x)\| = \|x\|\) for all \(x \in V\) is called an isometry.
Lemma.
Let U be an self-adjoint operator on a finite-dimensional inner product space V. If \(\langle x, U(x)\rangle = 0\) for all \(x \in V\), then \(U = T_0\).
證明:若\(U(x) = \lambda x\), 則\(0 = \langle x, U(x)\rangle = \lambda\langle x, x\rangle\).
Theorem 6.18:
4 equivalent statements about unitary/othogonal operators:
Let T be a linear operator on a finite-dimensional inner product space V. Then the following statements are equivalent.
(a) \(TT^* = T^*T = I\).
(b) \(\langle T(x), T(y)\rangle = \langle x, y\rangle\) for all \(x, y \in V\).
(c) If \(\beta\) is an orthonormal basis for V, then \(T(\beta)\) is an orthonormal basis for \(V\).
(d) \(\|T(x)\| = \|x\|\) for all \(x \in V\).
證明:
(a) -> (b): \(\langle T(x), T(y)\rangle = \langle x, T^*T(y)\rangle = \langle x, y\rangle\)
(b) -> (c) 顯然
(c) -> (d): \(\|x\|^2 = \langle \sum_{i=1}^na_iv_i, \sum_{j=1}^na_jv_j\rangle = \sum_{i=1}^n\sum_{j=1}^na_i\overline{a_j}\langle v_i, v_j\rangle = \sum_{i=1}^n\sum_{j=1}^na_i\overline{a_j}\delta_{ij} = \sum_{i=1}^n\|a_i\|^2\)
(d) -> (a): 將x在\(\beta\)下表示,T(x)在\(T(\beta)\)下表示,可得二者范數相同。
Corollary 1 & 2:
\(|\lambda| = 1 \Leftrightarrow\) orthonormal/unitary.
Let T be a linear operator on a finite-dimensional complex [real] inner product V. Then V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1 if and only if T is both unitary[self-adjoint and orthogonal].
Definition (unitarily equivalent).
\(A = P^*BP\) where \(P\) is unitary. (The definition of orthogonally equivalent is similar.)
Theorem 6.19 & 6.20.
Complex[real] matrix \(A\) is normal[symmetrix] iff \(A\) is unitarily equivalent to a complex[real] diagonal matrix.
證明(Complex):
If \(A = P^*DP\), then $$AA* = (P^DP)(P^D^P) = P^DD^P = P^D^DP = P^D^PP^DP = A^*A$$.
充分性前文已證。
Theorem 6.21 (Schur) 舒爾定理的矩陣表示.
\(A\in M_{n\times n}(F)\), and the characteristic polynomial of \(A\) splits. If F = C[R], then A is unitarily[orthogonally] equivalent to a complex[real] upper triangular matrix.
6.6 Orthogonal Projections & Spectral Theorem
Definition (orthogonal projection)
We say \(T\) is an orthogonal projection if \(R(T)^\perp = N(T)\) and \(N(T)^\perp = R(T)\).
Theorem 6.24.
Let V be an inner product space, and let T be a linear operator on V. Then T is an orthogonal projection iff T has an adjoint \(T^*\) and \(T^2=T=T^*\).
Theorem 6.25 (The Spectral Theorem).
T is a linear operator on a finite-dimensional inner product space V over F with the distinct eigenvalues \(\lambda_1,\lambda_2,\ldots,\lambda_k\). Assume that T is normal is F = C and that T is self-adjoint if F = R. For each \(i(1 \le i \le k)\), Let \(W_i\) be the eigenspace of T corresponding to the eigenvalue \(\lambda_i\), and let \(T_i\) be the orthogonal projection of \(V\) on \(W_i\). Then:
(a) \(V = W_1\oplus W_2 \oplus \ldots \oplus W_k\).
(b) if \(W_i'\) denotes the direct sum of the subspaces \(W_j\) for \(j \neq i\), then \(W_i^\perp = W_i'\).
(c) \(T_iT_j = \delta_{ij}T_i\) for \(1 \le i, j \le k\).
(d) \(I = T_1 + T_2 + \ldots + T_k\).
(e) \(T = \lambda_1T_1 + \lambda_2T_2 + \ldots + \lambda_kT_k\).
The set \(\{\lambda_1, \lambda_2, \dots, \lambda_k\}\) is called the spectrum of \(T\), the sum \(I = T_1 + T_2 + \ldots + T_k\) is called the resolution of the identity operator induced by \(T\), and the sum \(T = \lambda_1T_1 + \lambda_2T_2 + \ldots + \lambda_kT_k\) is called the spectral decomposition of T.
Corollary 1.
If F = C, then T is normal iff \(T^* = g(T)\) for some polynomial \(g\).
Corollary 2.
If F = C, then T is unitary iff T is normal and all \(|\lambda| = 1\).
Corollary 3.
If F = C and T is normal, then T is self-adjoint iff every eigenvalue of T is real.
Corollary 4.
Let T be as is the spectral theorem with spectral decomposition \(T = \lambda_1T_1 + \lambda_2T_2 + \ldots + \lambda_kT_k\), Then each \(T_j\) is a polynomiao in T.