什么是模式識別?
它指的是,對表征事物或現象的各種形式的信息進行處理和分析,從而達到對事物或現象進行描述、辨認、分類和解釋的目的。
我們之所以可以很快辨別貓是貓、O不是0,就是因為在我們大腦中已經給貓的做了一個抽象,給O和0做了區分,這樣我們才不用每次都重新靠思考和計算理解這到底是不是貓。這個在大腦中的抽象就是模式識別。
模式識別和機器學習的區別在於:前者喂給機器的是各種特征描述,從而讓機器對未知的事物進行判斷;后者喂給機器的是某一事物的海量樣本,讓機器通過樣本來自己發現特征,最后去判斷某些未知的事物。
什么是模板匹配?
機器學習炙手可熱的今天,貌似好多人都信手拈來“K-NN”、“Bayes Classifier”、“PCA”這種主流的模式識別算法。但是我們今天要聊的是傳統的、最簡單的模板匹配。
模板匹配是一種最原始、最基本的模式識別方法,研究某一特定對象物的圖案位於圖像的什么地方,進而識別對象物,這就是一個匹配問題。它是圖像處理中最基本、最常用的匹配方法。模板匹配具有自身的局限性,主要表現在它只能進行平行移動,若原圖像中的匹配目標發生旋轉或大小變化,該算法無效。
簡單來說,模板匹配就是在整個圖像區域發現與給定子圖像匹配的小塊區域。
怎么實現模板匹配?
在待檢測圖像上,從左到右,從上向下一個像素一個像素地移動模板,計算模板圖像與重疊子圖像的匹配度,匹配程度越大,兩者相同的可能性越大。
怎么計算匹配度?
OpenCV中提供的模板識別的方法如下:
1.利用平方差來進行匹配,最好匹配為0.匹配越差,匹配值越大。
- TM_SQDIFF:平方差匹配
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1SJTI4eCUyQyt5JTI5JTNEJTVDc3VtXyU3QnglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUlN0QlN0QlNUNsZWZ0JTI4VCU1Q2xlZnQlMjh4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTVDcmlnaHQlMjktSSU1Q2xlZnQlMjh4JTJCeCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klMkJ5JTVFJTdCJTVDcHJpbWUlN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTI5JTVFJTdCMiU3RA==.png)
- TM_SQDIFF_NORMED:標准平方差匹配
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1SJTI4eCUyQyt5JTI5JTNEJTVDZnJhYyU3QiU1Q3N1bV8lN0J4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTdEJTVDbGVmdCUyOFQlNUNsZWZ0JTI4eCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klNUUlN0IlNUNwcmltZSU3RCU1Q3JpZ2h0JTI5LUklNUNsZWZ0JTI4eCUyQnglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTJCeSU1RSU3QiU1Q3ByaW1lJTdEJTVDcmlnaHQlMjklNUNyaWdodCUyOSU1RSU3QjIlN0QlN0QlN0IlNUNzcXJ0JTdCJTVDc3VtXyU3QnglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUlN0QlN0QrVCU1Q2xlZnQlMjh4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTVDcmlnaHQlMjklNUUlN0IyJTdEKyU1Q2Nkb3QrJTVDc3VtXyU3QnglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUlN0QlN0QrSSU1Q2xlZnQlMjh4JTJCeCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klMkJ5JTVFJTdCJTVDcHJpbWUlN0QlNUNyaWdodCUyOSU1RSU3QjIlN0QlN0QlN0Q=.png)
2.采用模板和圖像間的乘法操作,數越大表示匹配程度較高, 0表示最壞的匹配效果。
- TM_CCORR:相關性匹配
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1SJTI4eCUyQyt5JTI5JTNEJTVDc3VtXyU3QnglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUlN0QlN0QlNUNsZWZ0JTI4VCU1Q2xlZnQlMjh4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTVDcmlnaHQlMjkrJTVDY2RvdCtJJTVDbGVmdCUyOHglMkJ4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSUyQnklNUUlN0IlNUNwcmltZSU3RCU1Q3JpZ2h0JTI5JTVDcmlnaHQlMjk=.png)
- TM_CCORR_NORMED:標准相關性匹配
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1SJTI4eCUyQyt5JTI5JTNEJTVDZnJhYyU3QiU1Q3N1bV8lN0J4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTdEJTVDbGVmdCUyOFQlNUNsZWZ0JTI4eCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klNUUlN0IlNUNwcmltZSU3RCU1Q3JpZ2h0JTI5KyU1Q2Nkb3QrSSU1Q2xlZnQlMjh4JTJCeCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klMkJ5JTVFJTdCJTVDcHJpbWUlN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTI5JTdEJTdCJTVDc3FydCU3QiU1Q3N1bV8lN0J4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTdEK1QlNUNsZWZ0JTI4eCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klNUUlN0IlNUNwcmltZSU3RCU1Q3JpZ2h0JTI5JTVFJTdCMiU3RCslNUNjZG90KyU1Q3N1bV8lN0J4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTdEK0klNUNsZWZ0JTI4eCUyQnglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTJCeSU1RSU3QiU1Q3ByaW1lJTdEJTVDcmlnaHQlMjklNUUlN0IyJTdEJTdEJTdE.png)
3. 將模版對其均值的相對值與圖像對其均值的相關值進行匹配,1表示完美匹配,-1表示糟糕的匹配,0表示沒有任何相關性(隨機序列)。
- TM_CCOEFF:相關性系數匹配
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1SJTI4eCUyQyt5JTI5JTNEJTVDc3VtXyU3QnglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUlN0QlN0QlNUNsZWZ0JTI4VCU1RSU3QiU1Q3ByaW1lJTdEJTVDbGVmdCUyOHglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUlN0QlNUNyaWdodCUyOSslNUNjZG90K0klNUUlN0IlNUNwcmltZSU3RCU1Q2xlZnQlMjh4JTJCeCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klMkJ5JTVFJTdCJTVDcHJpbWUlN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTI5.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFycmF5JTdEJTdCbCU3RCU3QiU1Q3RleHQrJTdCK3doZXJlKyU3RCU3RCslNUMlNUMrJTdCVCU1RSU3QiU1Q3ByaW1lJTdEJTVDbGVmdCUyOHglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUlN0QlNUNyaWdodCUyOSUzRFQlNUNsZWZ0JTI4eCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klNUUlN0IlNUNwcmltZSU3RCU1Q3JpZ2h0JTI5LTErJTJGJTI4dyslNUNjZG90K2glMjkrJTVDY2RvdCslNUNzdW1fJTdCeCU1RSU3QiU1Q3ByaW1lKyU1Q3ByaW1lJTdEJTJDK3klNUUlN0IlNUNwcmltZSslNUNwcmltZSU3RCU3RCtUJTVDbGVmdCUyOHglNUUlN0IlNUNwcmltZSslNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUrJTVDcHJpbWUlN0QlNUNyaWdodCUyOSU3RCslNUMlNUMrJTdCSSU1RSU3QiU1Q3ByaW1lJTdEJTVDbGVmdCUyOHglMkJ4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSUyQnklNUUlN0IlNUNwcmltZSU3RCU1Q3JpZ2h0JTI5JTNESSU1Q2xlZnQlMjh4JTJCeCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klMkJ5JTVFJTdCJTVDcHJpbWUlN0QlNUNyaWdodCUyOS0xKyUyRiUyOHcrJTVDY2RvdCtoJTI5KyU1Q2Nkb3QrJTVDc3VtXyU3QnglNUUlN0IlNUNwcmltZSslNUNwcmltZSU3RCUyQyt5JTVFJTdCJTVDcHJpbWUrJTVDcHJpbWUlN0QlN0QrSSU1Q2xlZnQlMjh4JTJCeCU1RSU3QiU1Q3ByaW1lKyU1Q3ByaW1lJTdEJTJDK3klMkJ5JTVFJTdCJTVDcHJpbWUrJTVDcHJpbWUlN0QlNUNyaWdodCUyOSU3RCU1Q2VuZCU3QmFycmF5JTdE.png)
- TM_CCOEFF_NORMED:標准相關性系數匹配
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1SJTI4eCUyQyt5JTI5JTNEJTVDZnJhYyU3QiU1Q3N1bV8lN0J4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTdEJTVDbGVmdCUyOFQlNUUlN0IlNUNwcmltZSU3RCU1Q2xlZnQlMjh4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTVDcmlnaHQlMjkrJTVDY2RvdCtJJTVFJTdCJTVDcHJpbWUlN0QlNUNsZWZ0JTI4eCUyQnglNUUlN0IlNUNwcmltZSU3RCUyQyt5JTJCeSU1RSU3QiU1Q3ByaW1lJTdEJTVDcmlnaHQlMjklNUNyaWdodCUyOSU3RCU3QiU1Q3NxcnQlN0IlNUNzdW1fJTdCeCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klNUUlN0IlNUNwcmltZSU3RCU3RCtUJTVFJTdCJTVDcHJpbWUlN0QlNUNsZWZ0JTI4eCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klNUUlN0IlNUNwcmltZSU3RCU1Q3JpZ2h0JTI5JTVFJTdCMiU3RCslNUNjZG90KyU1Q3N1bV8lN0J4JTVFJTdCJTVDcHJpbWUlN0QlMkMreSU1RSU3QiU1Q3ByaW1lJTdEJTdEK0klNUUlN0IlNUNwcmltZSU3RCU1Q2xlZnQlMjh4JTJCeCU1RSU3QiU1Q3ByaW1lJTdEJTJDK3klMkJ5JTVFJTdCJTVDcHJpbWUlN0QlNUNyaWdodCUyOSU1RSU3QjIlN0QlN0QlN0Q=.png)
總結:隨着從簡單的測量(平方差)到更復雜的測量(相關系數),我們可獲得越來越准確的匹配(同時也意味着越來越大的計算代價)。
紙上得來終覺淺,絕知此事要躬行
上代碼:
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace std;
using namespace cv;
/// Global Variables
bool use_mask;
Mat img; Mat templ; Mat mask; Mat result;
const char* image_window = "Source Image";
const char* result_window = "Result window";
int match_method;
int max_Trackbar = 5;
// Function Headers
void MatchingMethod( int, void* );
/**
* @function main
*/
int main( int argc, char** argv )
{
//MatchTemplate_Demo <image_name> <template_name>[<mask_name>]
// Load image and template
img = imread("F:/opencv/build/bin/sample-data/template-matching/Original_Image.jpg", IMREAD_COLOR );
templ = imread("F:/opencv/build/bin/sample-data/template-matching/Template_Image.jpg", IMREAD_COLOR );
use_mask = false;
//mask = imread("", IMREAD_COLOR);
if(img.empty() || templ.empty() || (use_mask && mask.empty()))
{
cout << "Can't read one of the images" << endl;
return -1;
}
// Create windows
namedWindow( image_window, WINDOW_AUTOSIZE );
namedWindow( result_window, WINDOW_AUTOSIZE );
// Create Trackbar
const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );
MatchingMethod( 0, 0 );
waitKey(0);
return 0;
}
/**
* @function MatchingMethod
* @brief Trackbar callback
*/
void MatchingMethod( int, void* )
{
// Source image to display
Mat img_display;
img.copyTo( img_display );
// Create the result matrix
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;
result.create( result_rows, result_cols, CV_32FC1 );
// Do the Matching and Normalize
bool method_accepts_mask = (TM_SQDIFF == match_method || match_method == TM_CCORR_NORMED);
if (use_mask && method_accepts_mask)
{ matchTemplate( img, templ, result, match_method, mask); }
else
{ matchTemplate( img, templ, result, match_method); }
normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );
// Localizing the best match with minMaxLoc
double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if( match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED )
{ matchLoc = minLoc; }
else
{ matchLoc = maxLoc; }
// Show me what you got
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
imshow( image_window, img_display );
imshow( result_window, result );
return;
}
結果:

