python數據分析——pandas的拼接操作


pandas的拼接操作

pandas的拼接分為兩種:

  • 級聯:pd.concat, pd.append
  • 合並:pd.merge, pd.join

1. 使用pd.concat()級聯

pandas使用pd.concat函數,與np.concatenate函數類似,只是多了一些參數:

objs
axis=0
keys
join='outer' / 'inner':表示的是級聯的方式,outer會將所有的項進行級聯(忽略匹配和不匹配),而inner只會將匹配的項級聯到一起,不匹配的不級聯
ignore_index=False

1)匹配級聯

In [1]:
import numpy as np import pandas as pd from pandas import Series,DataFrame 
In [2]:
df1 = DataFrame(data=np.random.randint(0,100,size=(3,3)),index=['a','b','c'],columns=['A','B','C']) df2 = DataFrame(data=np.random.randint(0,100,size=(3,3)),index=['a','d','c'],columns=['A','d','C']) 
In [7]:
pd.concat((df1,df1),axis=0,join='inner') 
Out[7]:
  A B C
a 59 40 89
b 71 5 76
c 29 34 87
a 59 40 89
b 71 5 76
c 29 34 87

2) 不匹配級聯

不匹配指的是級聯的維度的索引不一致。例如縱向級聯時列索引不一致,橫向級聯時行索引不一致

有2種連接方式:

  • 外連接:補NaN(默認模式)
  • 內連接:只連接匹配的項
In [11]:
pd.concat((df1,df2),axis=1,join='outer')
Out[11]:
  A B C A d C
a 59.0 40.0 89.0 50.0 26.0 45.0
b 71.0 5.0 76.0 NaN NaN NaN
c 29.0 34.0 87.0 31.0 82.0 35.0
d NaN NaN NaN 23.0 95.0 94.0

3) 使用df.append()函數添加

由於在后面級聯的使用非常普遍,因此有一個函數append專門用於在后面添加

2. 使用pd.merge()合並

merge與concat的區別在於,merge需要依據某一共同的列來進行合並

使用pd.merge()合並時,會自動根據兩者相同column名稱的那一列,作為key來進行合並。

注意每一列元素的順序不要求一致

參數:

  • how:out取並集 inner取交集
  • on:當有多列相同的時候,可以使用on來指定使用那一列進行合並,on的值為一個列表

1) 一對一合並

In [12]:
df1 = DataFrame({'employee':['Bob','Jake','Lisa'], 'group':['Accounting','Engineering','Engineering'], }) df1 
Out[12]:
  employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
In [13]:
df2 = DataFrame({'employee':['Lisa','Bob','Jake'], 'hire_date':[2004,2008,2012], }) df2 
Out[13]:
  employee hire_date
0 Lisa 2004
1 Bob 2008
2 Jake 2012
In [14]:
pd.merge(df1,df2,how='outer') 
Out[14]:
  employee group hire_date
0 Bob Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004

2) 多對一合並

In [15]:
df3 = DataFrame({ 'employee':['Lisa','Jake'], 'group':['Accounting','Engineering'], 'hire_date':[2004,2016]}) df3 
Out[15]:
  employee group hire_date
0 Lisa Accounting 2004
1 Jake Engineering 2016
In [16]:
df4 = DataFrame({'group':['Accounting','Engineering','Engineering'], 'supervisor':['Carly','Guido','Steve'] }) df4 
Out[16]:
  group supervisor
0 Accounting Carly
1 Engineering Guido
2 Engineering Steve
In [17]:
pd.merge(df3,df4) 
Out[17]:
  employee group hire_date supervisor
0 Lisa Accounting 2004 Carly
1 Jake Engineering 2016 Guido
2 Jake Engineering 2016 Steve

3) 多對多合並

In [18]:
df1 = DataFrame({'employee':['Bob','Jake','Lisa'], 'group':['Accounting','Engineering','Engineering']}) df1 
Out[18]:
  employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
In [19]:
df5 = DataFrame({'group':['Engineering','Engineering','HR'], 'supervisor':['Carly','Guido','Steve'] }) df5 
Out[19]:
  group supervisor
0 Engineering Carly
1 Engineering Guido
2 HR Steve
In [21]:
pd.merge(df1,df5,how='outer') 
Out[21]:
  employee group supervisor
0 Bob Accounting NaN
1 Jake Engineering Carly
2 Jake Engineering Guido
3 Lisa Engineering Carly
4 Lisa Engineering Guido
5 NaN HR Steve
  • 加載excl數據:pd.read_excel('excl_path',sheetname=1)

4) key的規范化

  • 當列沖突時,即有多個列名稱相同時,需要使用on=來指定哪一個列作為key,配合suffixes指定沖突列名
In [10]:
df1 = DataFrame({'employee':['Jack',"Summer","Steve"], 'group':['Accounting','Finance','Marketing']}) 
In [11]:
df2 = DataFrame({'employee':['Jack','Bob',"Jake"], 'hire_date':[2003,2009,2012], 'group':['Accounting','sell','ceo']}) 
In [22]:
display(df1,df2) 
 
  employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
 
  employee hire_date
0 Lisa 2004
1 Bob 2008
2 Jake 2012
  • 當兩張表沒有可進行連接的列時,可使用left_on和right_on手動指定merge中左右兩邊的哪一列列作為連接的列
In [12]:
df1 = DataFrame({'employee':['Bobs','Linda','Bill'], 'group':['Accounting','Product','Marketing'], 'hire_date':[1998,2017,2018]}) 
In [13]:
df5 = DataFrame({'name':['Lisa','Bobs','Bill'], 'hire_dates':[1998,2016,2007]}) 
In [23]:
display(df1,df5) 
 
  employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
 
  group supervisor
0 Engineering Carly
1 Engineering Guido
2 HR Steve

5) 內合並與外合並:out取並集 inner取交集

  • 內合並:只保留兩者都有的key(默認模式)
In [25]:
df6 = DataFrame({'name':['Peter','Paul','Mary'], 'food':['fish','beans','bread']} ) df7 = DataFrame({'name':['Mary','Joseph'], 'drink':['wine','beer']}) 
In [26]:
display(df6,df7) 
 
  name food
0 Peter fish
1 Paul beans
2 Mary bread
 
  name drink
0 Mary wine
1 Joseph beer
  • 外合並 how='outer':補NaN
In [27]:
df6 = DataFrame({'name':['Peter','Paul','Mary'], 'food':['fish','beans','bread']} ) df7 = DataFrame({'name':['Mary','Joseph'], 'drink':['wine','beer']}) display(df6,df7) pd.merge() 
 
  name food
0 Peter fish
1 Paul beans
2 Mary bread
 
  name drink
0 Mary wine
1 Joseph beer


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM