Python數據分析之pandas學習


Python中的pandas模塊進行數據分析

接下來pandas介紹中將學習到如下8塊內容:
1、數據結構簡介:DataFrame和Series
2、數據索引index
3、利用pandas查詢數據
4、利用pandas的DataFrames進行統計分析
5、利用pandas實現SQL操作
6、利用pandas進行缺失值的處理
7、利用pandas實現Excel的數據透視表功能
8、多層索引的使用

 

一、數據結構介紹

在pandas中有兩類非常重要的數據結構,即序列Series和數據框DataFrame。Series類似於numpy中的一維數組,除了通吃一維數組可用的函數或方法,而且其可通過索引標簽的方式獲取數據,還具有索引的自動對齊功能;DataFrame類似於numpy中的二維數組,同樣可以通用numpy數組的函數和方法,而且還具有其他靈活應用,后續會介紹到。

1、Series的創建

序列的創建主要有三種方式:

1)通過一維數組創建序列
  1. import numpy as np, pandas as pd
  2. arr1 = np.arange(10)
  3. arr1
  4. type(arr1)
  5. s1 = pd.Series(arr1)
  6. s1
  7. type(s1)
2)通過字典的方式創建序列
  1. dic1 = {'a':10,'b':20,'c':30,'d':40,'e':50}
  2. dic1
  3. type(dic1)
  4. s2 = pd.Series(dic1)
  5. s2
  6. type(s2)
3)通過DataFrame中的某一行或某一列創建序列

這部分內容我們放在后面講,因為下面就開始將DataFrame的創建。

2、DataFrame的創建

數據框的創建主要有三種方式:

1)通過二維數組創建數據框
  1. arr2 = np.array(np.arange(12)).reshape(4,3)
  2. arr2
  3. type(arr2)
  4. df1 = pd.DataFrame(arr2)
  5. df1
  6. type(df1)
2)通過字典的方式創建數據框

以下以兩種字典來創建數據框,一個是字典列表,一個是嵌套字典。

  1. dic2 = {'a':[1,2,3,4],'b':[5,6,7,8],
  2. 'c':[9,10,11,12],'d':[13,14,15,16]}
  3. dic2
  4. type(dic2)
  5. df2 = pd.DataFrame(dic2)
  6. df2
  7. type(df2)
  8. dic3 = {'one':{'a':1,'b':2,'c':3,'d':4},
  9. 'two':{'a':5,'b':6,'c':7,'d':8},
  10. 'three':{'a':9,'b':10,'c':11,'d':12}}
  11. dic3
  12. type(dic3)
  13. df3 = pd.DataFrame(dic3)
  14. df3
  15. type(df3)
3)通過數據框的方式創建數據框
  1. df4 = df3[['one','three']]
  2. df4
  3. type(df4)
  4. s3 = df3['one']
  5. s3
  6. type(s3)

二、數據索引index

細致的朋友可能會發現一個現象,不論是序列也好,還是數據框也好,對象的最左邊總有一個非原始數據對象,這個是什么呢?不錯,就是我們接下來要介紹的索引。
在我看來,序列或數據框的索引有兩大用處,一個是通過索引值或索引標簽獲取目標數據,另一個是通過索引,可以使序列或數據框的計算、操作實現自動化對齊,下面我們就來看看這兩個功能的應用。

1、通過索引值或索引標簽獲取數據

  1. s4 = pd.Series(np.array([1,1,2,3,5,8]))
  2. s4

如果不給序列一個指定的索引值,則序列自動生成一個從0開始的自增索引。可以通過index查看序列的索引:

  1. s4.index

現在我們為序列設定一個自定義的索引值:

  1. s4.index = ['a','b','c','d','e','f']
  2. s4

序列有了索引,就可以通過索引值或索引標簽進行數據的獲取:

  1. s4[3]
  2. s4['e']
  3. s4[[1,3,5]]
  4. s4[['a','b','d','f']]
  5. s4[:4]
  6. s4['c':]
  7. s4['b':'e']

千萬注意:如果通過索引標簽獲取數據的話,末端標簽所對應的值是可以返回的!在一維數組中,就無法通過索引標簽獲取數據,這也是序列不同於一維數組的一個方面。

2、自動化對齊

如果有兩個序列,需要對這兩個序列進行算術運算,這時索引的存在就體現的它的價值了—自動化對齊.

  1. s5 = pd.Series(np.array([10,15,20,30,55,80]),
  2. index = ['a','b','c','d','e','f'])
  3. s5
  4. s6 = pd.Series(np.array([12,11,13,15,14,16]),
  5. index = ['a','c','g','b','d','f'])
  6. s6
  7. s5 + s6
  8. s5/s6

由於s5中沒有對應的g索引,s6中沒有對應的e索引,所以數據的運算會產生兩個缺失值NaN。注意,這里的算術結果就實現了兩個序列索引的自動對齊,而非簡單的將兩個序列加總或相除。對於數據框的對齊,不僅僅是行索引的自動對齊,同時也會自動對齊列索引(變量名)

數據框中同樣有索引,而且數據框是二維數組的推廣,所以其不僅有行索引,而且還存在列索引,關於數據框中的索引相比於序列的應用要強大的多,這部分內容將放在數據查詢中講解。

三、利用pandas查詢數據

這里的查詢數據相當於R語言里的subset功能,可以通過布爾索引有針對的選取原數據的子集、指定行、指定列等。我們先導入一個student數據集:

  1. student = pd.io.parsers.read_csv('C:\\Users\\admin\\Desktop\\student.csv')

查詢數據的前5行或末尾5行

  1. student.head()
  2. student.tail()

查詢指定的行

  1. student.ix[[0,2,4,5,7]] #這里的ix索引標簽函數必須是中括號[]

查詢指定的列

  1. student[['Name','Height','Weight']].head() #如果多個列的話,必須使用雙重中括號

也可以通過ix索引標簽查詢指定的列

  1. student.ix[:,['Name','Height','Weight']].head()

查詢指定的行和列

  1. student.ix[[0,2,4,5,7],['Name','Height','Weight']].head()

以上是從行或列的角度查詢數據的子集,現在我們來看看如何通過布爾索引實現數據的子集查詢。
查詢所有女生的信息

  1. student[student['Sex']=='F']

查詢出所有12歲以上的女生信息

  1. student[(student['Sex']=='F') & (student['Age']>12)]

查詢出所有12歲以上的女生姓名、身高和體重

  1. student[(student['Sex']=='F') & (student['Age']>12)][['Name','Height','Weight']]

上面的查詢邏輯其實非常的簡單,需要注意的是,如果是多個條件的查詢,必須在&(且)或者|(或)的兩端條件用括號括起來。

     四、統計分析

pandas模塊為我們提供了非常多的描述性統計分析的指標函數,如總和、均值、最小值、最大值等,我們來具體看看這些函數:
首先隨機生成三組數據

  1. np.random.seed(1234)
  2. d1 = pd.Series(2*np.random.normal(size = 100)+3)
  3. d2 = np.random.f(2,4,size = 100)
  4. d3 = np.random.randint(1,100,size = 100)
  5. d1.count() #非空元素計算
  6. d1.min() #最小值
  7. d1.max() #最大值
  8. d1.idxmin() #最小值的位置,類似於R中的which.min函數
  9. d1.idxmax() #最大值的位置,類似於R中的which.max函數
  10. d1.quantile(0.1) #10%分位數
  11. d1.sum() #求和
  12. d1.mean() #均值
  13. d1.median() #中位數
  14. d1.mode() #眾數
  15. d1.var() #方差
  16. d1.std() #標准差
  17. d1.mad() #平均絕對偏差
  18. d1.skew() #偏度
  19. d1.kurt() #峰度
  20. d1.describe() #一次性輸出多個描述性統計指標

必須注意的是,descirbe方法只能針對序列或數據框,一維數組是沒有這個方法的

這里自定義一個函數,將這些統計描述指標全部匯總到一起:

  1. def stats(x):
  2. return pd.Series([x.count(),x.min(),x.idxmin(),
  3. x.quantile(.25),x.median(),
  4. x.quantile(.75),x.mean(),
  5. x.max(),x.idxmax(),
  6. x.mad(),x.var(),
  7. x.std(),x.skew(),x.kurt()],
  8. index = ['Count','Min','Whicn_Min',
  9. 'Q1','Median','Q3','Mean',
  10. 'Max','Which_Max','Mad',
  11. 'Var','Std','Skew','Kurt'])
  12. stats(d1)

在實際的工作中,我們可能需要處理的是一系列的數值型數據框,如何將這個函數應用到數據框中的每一列呢?可以使用apply函數,這個非常類似於R中的apply的應用方法。
將之前創建的d1,d2,d3數據構建數據框:

  1. df = pd.DataFrame(np.array([d1,d2,d3]).T,columns=['x1','x2','x3'])
  2. df.head()
  3. df.apply(stats)

非常完美,就這樣很簡單的創建了數值型數據的統計性描述。如果是離散型數據呢?就不能用這個統計口徑了,我們需要統計離散變量的觀測數、唯一值個數、眾數水平及個數。你只需要使用describe方法就可以實現這樣的統計了。

  1. student['Sex'].describe()

除以上的簡單描述性統計之外,還提供了連續變量的相關系數(corr)和協方差矩陣(cov)的求解,這個跟R語言是一致的用法。

  1. df.corr()

關於相關系數的計算可以調用pearson方法或kendell方法或spearman方法,默認使用pearson方法。

  1. df.corr('spearman')

如果只想關注某一個變量與其余變量的相關系數的話,可以使用corrwith,如下方只關心x1與其余變量的相關系數:

  1. df.corrwith(df['x1'])

數值型變量間的協方差矩陣

df.cov()

五、類似於SQL的操作

在SQL中常見的操作主要是增、刪、改、查幾個動作,那么pandas能否實現對數據的這幾項操作呢?答案是Of Course!

增:添加新行或增加新列
  1. In [99]: dic = {'Name':['LiuShunxiang','Zhangshan'],
  2. ...: 'Sex':['M','F'],'Age':[27,23],
  3. ...: 'Height':[165.7,167.2],'Weight':[61,63]}
  4. In [100]: student2 = pd.DataFrame(dic)
  5. In [101]: student2
  6. Out[101]:
  7. Age Height Name Sex Weight
  8. 0 27 165.7 LiuShunxiang M 61
  9. 1 23 167.2 Zhangshan F 63

現在將student2中的數據新增到student中,可以通過concat函數實現:

 


注意到了嗎?在數據庫中union必須要求兩張表的列順序一致,而這里concat函數可以自動對齊兩個數據框的變量!

新增列的話,其實在pandas中就更簡單了,例如在student2中新增一列學生成績:

 


對於新增的列沒有賦值,就會出現空NaN的形式。

刪:刪除表、觀測行或變量列

刪除數據框student2,通過del命令實現,該命令可以刪除Python的所有對象。

 


刪除指定的行

 


原數據中的第1,2,4,7行的數據已經被刪除了。
根據布爾索引刪除行數據,其實這個刪除就是保留刪除條件的反面數據,例如刪除所有14歲以下的學生:

 

刪除指定的列

 


我們發現,不論是刪除行還是刪除列,都可以通過drop方法實現,只需要設定好刪除的軸即可,即調整drop方法中的axis參數。默認該參數為0,表示刪除行觀測,如果需要刪除列變量,則需設置為1。

改:修改原始記錄的值

如果發現表中的某些數據錯誤了,如何更改原來的值呢?我們試試結合布爾索引和賦值的方法:
例如發現student3中姓名為Liushunxiang的學生身高錯了,應該是173,如何改呢?

 


這樣就可以把原來的身高修改為現在的170了。
看,關於索引的操作非常靈活、方便吧,就這樣輕松搞定數據的更改。

查:有關數據查詢部分,上面已經介紹過,下面重點講講聚合、排序和多表連接操作。
聚合:pandas模塊中可以通過groupby()函數實現數據的聚合操作

根據性別分組,計算各組別中學生身高和體重的平均值:

 

如果不對原始數據作限制的話,聚合函數會自動選擇數值型數據進行聚合計算。如果不想對年齡計算平均值的話,就需要剔除改變量:

 

groupby還可以使用多個分組變量,例如根本年齡和性別分組,計算身高與體重的平均值:

 


當然,還可以對每個分組計算多個統計量:

 


是不是很簡單,只需一句就能完成SQL中的SELECT…FROM…GROUP BY…功能,何樂而不為呢?

排序:

排序在日常的統計分析中還是比較常見的操作,我們可以使用order、sort_index和sort_values實現序列和數據框的排序工作:

 

我們再試試降序排序的設置:

 


上面兩個結果其實都是按值排序,並且結果中都給出了警告信息,即建議使用sort_values()函數進行按值排序。

在數據框中一般都是按值排序,例如:

 

多表連接:

多表之間的連接也是非常常見的數據庫操作,連接分內連接和外連接,在數據庫語言中通過join關鍵字實現,pandas我比較建議使用merger函數實現數據的各種連接操作。
如下是構造一張學生的成績表:

 


現在想把學生表student與學生成績表score做一個關聯,該如何操作呢?

 


注意,默認情況下,merge函數實現的是兩個表之間的內連接,即返回兩張表中共同部分的數據。可以通過how參數設置連接的方式,left為左連接;right為右連接;outer為外連接。

 

左連接實現的是保留student表中的所有信息,同時將score表的信息與之配對,能配多少配多少,對於沒有配對上的Name,將會顯示成績為NaN。

六、缺失值處理

 

現實生活中的數據是非常雜亂的,其中缺失值也是非常常見的,對於缺失值的存在可能會影響到后期的數據分析或挖掘工作,那么我們該如何處理這些缺失值呢?常用的有三大類方法,即刪除法、填補法和插值法。
刪除法:當數據中的某個變量大部分值都是缺失值,可以考慮刪除改變量;當缺失值是隨機分布的,且缺失的數量並不是很多是,也可以刪除這些缺失的觀測。
替補法:對於連續型變量,如果變量的分布近似或就是正態分布的話,可以用均值替代那些缺失值;如果變量是有偏的,可以使用中位數來代替那些缺失值;對於離散型變量,我們一般用眾數去替換那些存在缺失的觀測。
插補法:插補法是基於蒙特卡洛模擬法,結合線性模型、廣義線性模型、決策樹等方法計算出來的預測值替換缺失值。

我們這里就介紹簡單的刪除法和替補法:


這是一組含有缺失值的序列,我們可以結合sum函數和isnull函數來檢測數據中含有多少缺失值:

  1. In [130]: sum(pd.isnull(s))
  2. Out[130]: 9

直接刪除缺失值


默認情況下,dropna會刪除任何含有缺失值的行,我們再構造一個數據框試試:


返回結果表明,數據中只要含有缺失值NaN,該數據行就會被刪除,如果使用參數how=’all’,則表明只刪除所有行為缺失值的觀測。

使用一個常量來填補缺失值,可以使用fillna函數實現簡單的填補工作:
1)用0填補所有缺失值

2)采用前項填充或后向填充

3)使用常量填充不同的列

4)用均值或中位數填充各自的列


很顯然,在使用填充法時,相對於常數填充或前項、后項填充,使用各列的眾數、均值或中位數填充要更加合理一點,這也是工作中常用的一個快捷手段。

七、數據透視表

在Excel中有一個非常強大的功能就是數據透視表,通過托拉拽的方式可以迅速的查看數據的聚合情況,這里的聚合可以是計數、求和、均值、標准差等。
pandas為我們提供了非常強大的函數pivot_table(),該函數就是實現數據透視表功能的。對於上面所說的一些聚合函數,可以通過參數aggfunc設定。我們先看看這個函數的語法和參數吧:

  1. pivot_table(data,values=None,
  2. index=None,
  3. columns=None,
  4. aggfunc='mean',
  5. fill_value=None,
  6. margins=False,
  7. dropna=True,
  8. margins_name='All')
  9. data:需要進行數據透視表操作的數據框
  10. values:指定需要聚合的字段
  11. index:指定某些原始變量作為行索引
  12. columns:指定哪些離散的分組變量
  13. aggfunc:指定相應的聚合函數
  14. fill_value:使用一個常數替代缺失值,默認不替換
  15. margins:是否進行行或列的匯總,默認不匯總
  16. dropna:默認所有觀測為缺失的列
  17. margins_name:默認行匯總或列匯總的名稱為'All'

我們仍然以student表為例,來認識一下數據透視表pivot_table函數的用法:
對一個分組變量(Sex),一個數值變量(Height)作統計匯總

對一個分組變量(Sex),兩個數值變量(Height,Weight)作統計匯總

對兩個分組變量(Sex,Age),兩個數值變量(Height,Weight)作統計匯總


很顯然這樣的結果並不像Excel中預期的那樣,該如何變成列聯表的形式的?很簡單,只需將結果進行非堆疊操作(unstack)即可:


看,這樣的結果是不是比上面那種看起來更舒服一點?

使用多個聚合函數


有關更多數據透視表的操作,可參考《Pandas透視表(pivot_table)詳解》一文,鏈接地址:http://python.jobbole.com/81212/

八、多層索引的使用

最后我們再來講講pandas中的一個重要功能,那就是多層索引。在序列中它可以實現在一個軸上擁有多個索引,就類似於Excel中常見的這種形式:


對於這樣的數據格式有什么好處呢?pandas可以幫我們實現用低維度形式處理高維數數據,這里舉個例子也許你就能明白了:


對於這種多層次索引的序列,取數據就顯得非常簡單了:

對於這種多層次索引的序列,我們還可以非常方便的將其轉換為數據框的形式:


以上針對的是序列的多層次索引,數據框也同樣有多層次的索引,而且每條軸上都可以有這樣的索引,就類似於Excel中常見的這種形式:

我們不妨構造一個類似的高維數據框:


同樣,數據框中的多層索引也可以非常便捷的取出大塊數據:

在數據框中使用多層索引,可以將整個數據集控制在二維表結構中,這對於數據重塑和基於分組的操作(如數據透視表的生成)比較有幫助。
就拿student二維數據框為例,我們構造一個多層索引數據集:

講到這里,我們關於pandas模塊的學習基本完成,其實在掌握了pandas這8個主要的應用方法就可以靈活的解決很多工作中的數據處理、統計分析等任務。有關更多的pandas介紹,可參考pandas官方文檔。原文鏈接:http://www.cnblogs.com/nxld/p/6058591.html


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM