python数据分析——pandas的拼接操作


pandas的拼接操作

pandas的拼接分为两种:

  • 级联:pd.concat, pd.append
  • 合并:pd.merge, pd.join

1. 使用pd.concat()级联

pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:

objs
axis=0
keys
join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
ignore_index=False

1)匹配级联

In [1]:
import numpy as np import pandas as pd from pandas import Series,DataFrame 
In [2]:
df1 = DataFrame(data=np.random.randint(0,100,size=(3,3)),index=['a','b','c'],columns=['A','B','C']) df2 = DataFrame(data=np.random.randint(0,100,size=(3,3)),index=['a','d','c'],columns=['A','d','C']) 
In [7]:
pd.concat((df1,df1),axis=0,join='inner') 
Out[7]:
  A B C
a 59 40 89
b 71 5 76
c 29 34 87
a 59 40 89
b 71 5 76
c 29 34 87

2) 不匹配级联

不匹配指的是级联的维度的索引不一致。例如纵向级联时列索引不一致,横向级联时行索引不一致

有2种连接方式:

  • 外连接:补NaN(默认模式)
  • 内连接:只连接匹配的项
In [11]:
pd.concat((df1,df2),axis=1,join='outer')
Out[11]:
  A B C A d C
a 59.0 40.0 89.0 50.0 26.0 45.0
b 71.0 5.0 76.0 NaN NaN NaN
c 29.0 34.0 87.0 31.0 82.0 35.0
d NaN NaN NaN 23.0 95.0 94.0

3) 使用df.append()函数添加

由于在后面级联的使用非常普遍,因此有一个函数append专门用于在后面添加

2. 使用pd.merge()合并

merge与concat的区别在于,merge需要依据某一共同的列来进行合并

使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。

注意每一列元素的顺序不要求一致

参数:

  • how:out取并集 inner取交集
  • on:当有多列相同的时候,可以使用on来指定使用那一列进行合并,on的值为一个列表

1) 一对一合并

In [12]:
df1 = DataFrame({'employee':['Bob','Jake','Lisa'], 'group':['Accounting','Engineering','Engineering'], }) df1 
Out[12]:
  employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
In [13]:
df2 = DataFrame({'employee':['Lisa','Bob','Jake'], 'hire_date':[2004,2008,2012], }) df2 
Out[13]:
  employee hire_date
0 Lisa 2004
1 Bob 2008
2 Jake 2012
In [14]:
pd.merge(df1,df2,how='outer') 
Out[14]:
  employee group hire_date
0 Bob Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004

2) 多对一合并

In [15]:
df3 = DataFrame({ 'employee':['Lisa','Jake'], 'group':['Accounting','Engineering'], 'hire_date':[2004,2016]}) df3 
Out[15]:
  employee group hire_date
0 Lisa Accounting 2004
1 Jake Engineering 2016
In [16]:
df4 = DataFrame({'group':['Accounting','Engineering','Engineering'], 'supervisor':['Carly','Guido','Steve'] }) df4 
Out[16]:
  group supervisor
0 Accounting Carly
1 Engineering Guido
2 Engineering Steve
In [17]:
pd.merge(df3,df4) 
Out[17]:
  employee group hire_date supervisor
0 Lisa Accounting 2004 Carly
1 Jake Engineering 2016 Guido
2 Jake Engineering 2016 Steve

3) 多对多合并

In [18]:
df1 = DataFrame({'employee':['Bob','Jake','Lisa'], 'group':['Accounting','Engineering','Engineering']}) df1 
Out[18]:
  employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
In [19]:
df5 = DataFrame({'group':['Engineering','Engineering','HR'], 'supervisor':['Carly','Guido','Steve'] }) df5 
Out[19]:
  group supervisor
0 Engineering Carly
1 Engineering Guido
2 HR Steve
In [21]:
pd.merge(df1,df5,how='outer') 
Out[21]:
  employee group supervisor
0 Bob Accounting NaN
1 Jake Engineering Carly
2 Jake Engineering Guido
3 Lisa Engineering Carly
4 Lisa Engineering Guido
5 NaN HR Steve
  • 加载excl数据:pd.read_excel('excl_path',sheetname=1)

4) key的规范化

  • 当列冲突时,即有多个列名称相同时,需要使用on=来指定哪一个列作为key,配合suffixes指定冲突列名
In [10]:
df1 = DataFrame({'employee':['Jack',"Summer","Steve"], 'group':['Accounting','Finance','Marketing']}) 
In [11]:
df2 = DataFrame({'employee':['Jack','Bob',"Jake"], 'hire_date':[2003,2009,2012], 'group':['Accounting','sell','ceo']}) 
In [22]:
display(df1,df2) 
 
  employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
 
  employee hire_date
0 Lisa 2004
1 Bob 2008
2 Jake 2012
  • 当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列列作为连接的列
In [12]:
df1 = DataFrame({'employee':['Bobs','Linda','Bill'], 'group':['Accounting','Product','Marketing'], 'hire_date':[1998,2017,2018]}) 
In [13]:
df5 = DataFrame({'name':['Lisa','Bobs','Bill'], 'hire_dates':[1998,2016,2007]}) 
In [23]:
display(df1,df5) 
 
  employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
 
  group supervisor
0 Engineering Carly
1 Engineering Guido
2 HR Steve

5) 内合并与外合并:out取并集 inner取交集

  • 内合并:只保留两者都有的key(默认模式)
In [25]:
df6 = DataFrame({'name':['Peter','Paul','Mary'], 'food':['fish','beans','bread']} ) df7 = DataFrame({'name':['Mary','Joseph'], 'drink':['wine','beer']}) 
In [26]:
display(df6,df7) 
 
  name food
0 Peter fish
1 Paul beans
2 Mary bread
 
  name drink
0 Mary wine
1 Joseph beer
  • 外合并 how='outer':补NaN
In [27]:
df6 = DataFrame({'name':['Peter','Paul','Mary'], 'food':['fish','beans','bread']} ) df7 = DataFrame({'name':['Mary','Joseph'], 'drink':['wine','beer']}) display(df6,df7) pd.merge() 
 
  name food
0 Peter fish
1 Paul beans
2 Mary bread
 
  name drink
0 Mary wine
1 Joseph beer


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM