word2vec之tensorflow(skip-gram)實現


關於word2vec的理解,推薦文章https://www.cnblogs.com/guoyaohua/p/9240336.html

代碼參考https://github.com/eecrazy/word2vec_chinese_annotation

我在其基礎上修改了錯誤的部分,並添加了一些注釋。

代碼在jupyter notebook下運行。

from __future__ import print_function #表示不管哪個python版本,使用最新的print語法
import collections
import math
import numpy as np
import random
import tensorflow as tf
import zipfile
from matplotlib import pylab
from sklearn.manifold import TSNE %matplotlib inline

下載text8.zip文件,這個文件包含了大量單詞。官方地址為http://mattmahoney.net/dc/text8.zip

filename='text8.zip'
def read_data(filename):
  """Extract the first file enclosed in a zip file as a list of words"""
  with zipfile.ZipFile(filename) as f:
#     里面只有一個文件text8,包含了多個單詞
#     f.read返回字節,tf.compat.as_str將字節轉為字符
#     data包含了所有單詞
    data = tf.compat.as_str(f.read(f.namelist()[0])).split()
  return data

#words里面包含了所有的單詞
words = read_data(filename)
print('Data size %d' % len(words))

創建正-反詞典,並將單詞轉換為詞典索引,這里詞匯表取為50000,仍然有400000多的單詞標記為unknown。

#詞匯表大小
vocabulary_size = 50000

def build_dataset(words):
#     表示未知,即不在詞匯表里的單詞,注意這里用的是列表形式而非元組形式,因為后面未知的數量需要賦值
  count = [['UNK', -1]]
  count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
  
  #詞-索引哈希
  dictionary = dict()
  for word, _ in count:
#     每增加一個-->len+1,索引從0開始
    dictionary[word] = len(dictionary)
  
  #用索引表示的整個text8文本
  data = list()
  unk_count = 0
  for word in words:
    if word in dictionary:
      index = dictionary[word]
    else:
      index = 0  # dictionary['UNK']
      unk_count = unk_count + 1
    data.append(index)
  
  count[0][1] = unk_count
  # 索引-詞哈希  
  reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) 
  return data, count, dictionary, reverse_dictionary

data, count, dictionary, reverse_dictionary = build_dataset(words)
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10])
# 刪除,減少內存
del words  # Hint to reduce memory.

生成batch的函數

data_index = 0

# num_skips表示在兩側窗口內總共取多少個詞,數量可以小於2*skip_window
# span窗口為[ skip_window target skip_window ]
# num_skips=2*skip_window
def generate_batch(batch_size, num_skips, skip_window):
  global data_index
  
  #這里兩個斷言
  assert batch_size % num_skips == 0
  assert num_skips <= 2 * skip_window

  #初始化batch和labels,都是整形
  batch = np.ndarray(shape=(batch_size), dtype=np.int32)
  labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) #注意labels的形狀
  
  span = 2 * skip_window + 1 # [ skip_window target skip_window ]
  #buffer這個隊列太有用了,不斷地保存span個單詞在里面,然后不斷往后滑動,而且buffer[skip_window]就是中心詞
  buffer = collections.deque(maxlen=span)
  
  for _ in range(span):
    buffer.append(data[data_index])
    data_index = (data_index + 1) % len(data)
  
  #需要多少個中心詞,因為一個target對應num_skips個的單詞,即一個目標單詞w在num_skips=2時形成2個樣本(w,left_w),(w,right_w)
#     這樣描述了目標單詞w的上下文
  center_words_count=batch_size // num_skips
  for i in range(center_words_count):
    #skip_window在buffer里正好是中心詞所在位置
    target = skip_window  # target label at the center of the buffer
    targets_to_avoid = [ skip_window ]
    for j in range(num_skips):  
#     選取span窗口中不包含target的,且不包含已選過的
      target=random.choice([i for i in range(0,span) if i not in targets_to_avoid])
      targets_to_avoid.append(target)
#         batch中重復num_skips次
      batch[i * num_skips + j] = buffer[skip_window]
#         同一個target對應num_skips個上下文單詞
      labels[i * num_skips + j, 0] = buffer[target]
#     buffer滑動一格
    buffer.append(data[data_index])
    data_index = (data_index + 1) % len(data)
  return batch, labels

# 打印前8個單詞
print('data:', [reverse_dictionary[di] for di in data[:10]])
for num_skips, skip_window in [(2, 1), (4, 2)]:
    data_index = 0
    batch, labels = generate_batch(batch_size=16, num_skips=num_skips, skip_window=skip_window)
    print('\nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window))
    print('    batch:', [reverse_dictionary[bi] for bi in batch])
    print('    labels:', [reverse_dictionary[li] for li in labels.reshape(16)])

我這里打印的結果為:可以看到batch和label的關系為,一個target單詞多次對應於其上下文的單詞

data: ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first', 'used', 'against']

with num_skips = 2 and skip_window = 1:
    batch: ['originated', 'originated', 'as', 'as', 'a', 'a', 'term', 'term', 'of', 'of', 'abuse', 'abuse', 'first', 'first', 'used', 'used']
    labels: ['as', 'anarchism', 'originated', 'a', 'term', 'as', 'of', 'a', 'term', 'abuse', 'of', 'first', 'abuse', 'used', 'against', 'first']

with num_skips = 4 and skip_window = 2:
    batch: ['as', 'as', 'as', 'as', 'a', 'a', 'a', 'a', 'term', 'term', 'term', 'term', 'of', 'of', 'of', 'of']
    labels: ['anarchism', 'originated', 'a', 'term', 'originated', 'of', 'as', 'term', 'of', 'a', 'abuse', 'as', 'a', 'term', 'first', 'abuse']

構建model,定義loss:

batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.

valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
#隨機挑選一組單詞作為驗證集,valid_examples也就是下面的valid_dataset,是一個一維的ndarray
valid_examples = np.array(random.sample(range(valid_window), valid_size))

#trick:負采樣數值
num_sampled = 64 # Number of negative examples to sample.

graph = tf.Graph()

with graph.as_default(), tf.device('/cpu:0'):

  # 訓練集和標簽,以及驗證集(注意驗證集是一個常量集合)
  train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
  train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
  valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
  
  # 定義Embedding層,初始化。
  embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
  softmax_weights = tf.Variable(
    tf.truncated_normal([vocabulary_size, embedding_size],stddev=1.0 / math.sqrt(embedding_size)))
  softmax_biases = tf.Variable(tf.zeros([vocabulary_size]))
  
  # Model.
  # train_dataset通過embeddings變為稠密向量,train_dataset是一個一維的ndarray
  embed = tf.nn.embedding_lookup(embeddings, train_dataset)

  # Compute the softmax loss, using a sample of the negative labels each time.
  # 計算損失,tf.reduce_mean和tf.nn.sampled_softmax_loss
  loss = tf.reduce_mean(tf.nn.sampled_softmax_loss(weights=softmax_weights, biases=softmax_biases, inputs=embed,
                               labels=train_labels, num_sampled=num_sampled, num_classes=vocabulary_size))

  # Optimizer.優化器,這里也會優化embeddings
  # Note: The optimizer will optimize the softmax_weights AND the embeddings.
  # This is because the embeddings are defined as a variable quantity and the
  # optimizer's `minimize` method will by default modify all variable quantities 
  # that contribute to the tensor it is passed.
  # See docs on `tf.train.Optimizer.minimize()` for more details.
  optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)
  
  # 模型其實到這里就結束了,下面是在驗證集上做效果驗證
  # Compute the similarity between minibatch examples and all embeddings.
  # We use the cosine distance:先對embeddings做正則化
  norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
  normalized_embeddings = embeddings / norm
  valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
  #驗證集單詞與其他所有單詞的相似度計算
  similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))

開始訓練:

num_steps = 40001
with tf.Session(graph=graph) as session:
  tf.initialize_all_variables().run()
  print('Initialized')
  average_loss = 0
  for step in range(num_steps):
    batch_data, batch_labels = generate_batch(batch_size, num_skips, skip_window)
    feed_dict = {train_dataset : batch_data, train_labels : batch_labels}
    _, this_loss = session.run([optimizer, loss], feed_dict=feed_dict)
    
    average_loss += this_loss
#     每2000步計算一次平均loss
    if step % 2000 == 0:
      if step > 0:
        average_loss = average_loss / 2000
      # The average loss is an estimate of the loss over the last 2000 batches.
      print('Average loss at step %d: %f' % (step, average_loss))
      average_loss = 0
    
    # note that this is expensive (~20% slowdown if computed every 500 steps)
    if step % 10000 == 0:
      sim = similarity.eval()
      for i in range(valid_size):
        valid_word = reverse_dictionary[valid_examples[i]]
        top_k = 8 # number of nearest neighbors
#         nearest = (-sim[i, :]).argsort()[1:top_k+1]
        nearest = (-sim[i, :]).argsort()[0:top_k+1]#包含自己試試
        log = 'Nearest to %s:' % valid_word
        for k in range(top_k):
          close_word = reverse_dictionary[nearest[k]]
          log = '%s %s,' % (log, close_word)
        print(log)
  #一直到訓練結束,再對所有embeddings做一次正則化,得到最后的embedding
  final_embeddings = normalized_embeddings.eval()

我們可以看下訓練過程中的驗證情況,比如many這個單詞的相似詞計算:

 開始時,

Nearest to many: many, originator, jeddah, maxwell, laurent, distress, interpret, bucharest,

10000步后,

Nearest to many: many, some, several, jeddah, originator, neurath, distress, songs,

40000步后,

Nearest to many: many, some, several, these, various, such, other, most,

可以看到此時單詞的相似度確實很高了。

最后,我們通過降維,將單詞相似情況以圖示展現出來:

num_points = 400
# 降維度PCA
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points+1, :])
def plot(embeddings, labels):
  assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
  pylab.figure(figsize=(15,15))  # in inches
  for i, label in enumerate(labels):
    x, y = embeddings[i,:]
    pylab.scatter(x, y)
    pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                   ha='right', va='bottom')
  pylab.show()

words = [reverse_dictionary[i] for i in range(1, num_points+1)]
plot(two_d_embeddings, words)

結果如下,隨便舉些例子,university和college相近,take和took相近,one、two、three等相近


 

總結:原始的word2vec是用c語言寫的,這里用的python,結合的tensorflow。這個代碼存在一些問題,首先,單詞不是以索引作為輸入的,應該是以one-hot形式輸入。其次,負采樣的比例太小,詞匯表有50000,每批樣本才選64個去做softmax。然后,這里也沒使用到另一個trick(當然這里根本沒用one-hot,這個trick也不存在了,我甚至覺得根本不需要負采樣):將單詞構建為二叉樹(類似於從one-hot維度降低到二叉樹編碼(如哈夫曼樹)),從而實現一種降維操作。不過,即使是這個簡陋的模型,效果看起來依然不錯,即方向對了,醉漢也能走到家。

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM