import cv2 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')#人臉 eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')#人眼 smile_cascade=cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_smile.xml')#微笑 #3打開攝像頭 capture=cv2.VideoCapture(0) while True: #讀取該幀的畫面 ret, img = capture.read() # 6灰度處理 gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 7檢查人臉 faces = face_cascade.detectMultiScale(gray, 1.1, 3, 0, (120, 120)) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 3) face_area = img[y:y + h, x:x + w] eyes = eye_cascade.detectMultiScale(face_area,1.3,10) # 用人眼級聯分類器引擎在人臉區域進行人眼識別,返回的eyes為眼睛坐標列表 for (ex, ey, ew, eh) in eyes: # 畫出人眼框,綠色,畫筆寬度為1 cv2.rectangle(face_area, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 1) smile = smile_cascade.detectMultiScale(face_area, scaleFactor=1.16, minNeighbors=50, minSize=(50, 50), flags=cv2.CASCADE_SCALE_IMAGE) # 用人眼級聯分類器引擎在人臉區域進行人眼識別,返回的eyes為眼睛坐標列表 for (ex, ey, ew, eh) in smile: # 畫出人眼框,綠色,畫筆寬度為1 cv2.rectangle(face_area, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 1) cv2.putText(img, 'Smile', (x, y - 7), 3, 1.2, (0, 0, 255), 2, cv2.LINE_AA) # 9顯示圖片 cv2.imshow("My_按q退出", img) # 10暫停窗口 if cv2.waitKey(5) & 0xFF == ord('q'): break #11釋放資源 capture.release() # #12銷毀窗口 cv2.destoryAllWindows()
級聯分類器在cv2的data下,按照上方格式去寫,因此是不需要單獨找聯機分類器的!