#include <fstream> #include <utility> #include <Eigen/Core> #include <Eigen/Dense> #include <iostream> #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/default_device.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "opencv2/opencv.hpp" using namespace tensorflow::ops; using namespace tensorflow; using namespace std; using namespace cv; using tensorflow::Flag; using tensorflow::Tensor; using tensorflow::Status; using tensorflow::string; using tensorflow::int32 ; // 定義一個函數講OpenCV的Mat數據轉化為tensor,python里面只要對cv2.read讀進來的矩陣進行np.reshape之后, // 數據類型就成了一個tensor,即tensor與矩陣一樣,然后就可以輸入到網絡的入口了,但是C++版本,我們網絡開放的入口 // 也需要將輸入圖片轉化成一個tensor,所以如果用OpenCV讀取圖片的話,就是一個Mat,然后就要考慮怎么將Mat轉化為 // Tensor了 void CVMat_to_Tensor(Mat img,Tensor* output_tensor,int input_rows,int input_cols) { //imshow("input image",img); //圖像進行resize處理 resize(img,img,cv::Size(input_cols,input_rows)); //imshow("resized image",img); //歸一化 img.convertTo(img,CV_32FC1); img=1-img/255; //創建一個指向tensor的內容的指針 float *p = output_tensor->flat<float>().data(); //創建一個Mat,與tensor的指針綁定,改變這個Mat的值,就相當於改變tensor的值 cv::Mat tempMat(input_rows, input_cols, CV_32FC1, p); img.convertTo(tempMat,CV_32FC1); // waitKey(0); } int main(int argc, char** argv ) { /*--------------------------------配置關鍵信息------------------------------*/ string model_path="../inception_v3_2016_08_28_frozen.pb"; string image_path="../test.jpg"; int input_height =299; int input_width=299; string input_tensor_name="input"; string output_tensor_name="InceptionV3/Predictions/Reshape_1"; /*--------------------------------創建session------------------------------*/ Session* session; Status status = NewSession(SessionOptions(), &session);//創建新會話Session /*--------------------------------從pb文件中讀取模型--------------------------------*/ GraphDef graphdef; //Graph Definition for current model Status status_load = ReadBinaryProto(Env::Default(), model_path, &graphdef); //從pb文件中讀取圖模型; if (!status_load.ok()) { cout << "ERROR: Loading model failed..." << model_path << std::endl; cout << status_load.ToString() << "\n"; return -1; } Status status_create = session->Create(graphdef); //將模型導入會話Session中; if (!status_create.ok()) { cout << "ERROR: Creating graph in session failed..." << status_create.ToString() << std::endl; return -1; } cout << "<----Successfully created session and load graph.------->"<< endl; /*---------------------------------載入測試圖片-------------------------------------*/ cout<<endl<<"<------------loading test_image-------------->"<<endl; Mat img=imread(image_path,0); if(img.empty()) { cout<<"can't open the image!!!!!!!"<<endl; return -1; } //創建一個tensor作為輸入網絡的接口 Tensor resized_tensor(DT_FLOAT, TensorShape({1,input_height,input_width,3})); //將Opencv的Mat格式的圖片存入tensor CVMat_to_Tensor(img,&resized_tensor,input_height,input_width); cout << resized_tensor.DebugString()<<endl; /*-----------------------------------用網絡進行測試-----------------------------------------*/ cout<<endl<<"<-------------Running the model with test_image--------------->"<<endl; //前向運行,輸出結果一定是一個tensor的vector vector<tensorflow::Tensor> outputs; string output_node = output_tensor_name; Status status_run = session->Run({{input_tensor_name, resized_tensor}}, {output_node}, {}, &outputs); if (!status_run.ok()) { cout << "ERROR: RUN failed..." << std::endl; cout << status_run.ToString() << "\n"; return -1; } //把輸出值給提取出來 cout << "Output tensor size:" << outputs.size() << std::endl; for (std::size_t i = 0; i < outputs.size(); i++) { cout << outputs[i].DebugString()<<endl; } Tensor t = outputs[0]; // Fetch the first tensor auto tmap = t.tensor<float, 2>(); // Tensor Shape: [batch_size, target_class_num] int output_dim = t.shape().dim_size(1); // Get the target_class_num from 1st dimension // Argmax: Get Final Prediction Label and Probability int output_class_id = -1; double output_prob = 0.0; for (int j = 0; j < output_dim; j++) { cout << "Class " << j << " prob:" << tmap(0, j) << "," << std::endl; if (tmap(0, j) >= output_prob) { output_class_id = j; output_prob = tmap(0, j); } } // 輸出結果 cout << "Final class id: " << output_class_id << std::endl; cout << "Final class prob: " << output_prob << std::endl; return 0; }