tensorflow+inceptionv3圖像分類網絡結構的解析與代碼實現
論文鏈接:論文地址
ResNet傳送門:Resnet-cifar10
DenseNet傳送門:DenseNet
SegNet傳送門:Segnet-segmentation
深度學習的火熱,使得越來越多的科研人員投入到其中。而作為各種應用類型的網絡基礎,圖像分類的網絡結構有許多,從AlexNet開始,到VGG-Net,到GoogleNet,到ResNet,denseNet等。網絡結構在不斷地改進,也在不斷地趨於穩定。新的單純地圖像分類結構越來越少(可能是分類效果已經達到了一定的需求)。本文主要講解GoogleNet改進后的Inceptionv3網絡結構。其網絡結構如下所示:
該網絡在ILSVRC 2012的分類挑戰上能獲得5.6%的top-5 error。在參數量方面遠小於VGG-Net,所以能有更塊地訓練速度以及不錯的分類精度。文章中提到了4個通用的網絡設計原則。
簡單來講就是:1、不要在網絡的一開始使用過大的filter size,這會導致圖像信息的丟失;2、高維數據的表示更容易在網絡內進行局部處理,添加激活函數可以獲得更多的disentangled features (不知道怎么翻譯,有知道的大佬可否在評論底下說說?);3、空間聚合可以通過低維嵌入來完成,其表示能力沒有太多或任何損失。(這里講的就是網絡中inception模塊的分成4個branch最后聚合在一起所使用的原則);4、平衡網絡的寬度和深度。
卷積核的分解
文章的核心部分在於其inception modules。而inception modules中又用到了factorization(將的filter size 分解成多個小的filter size),其原理可以用如下的圖表示:
假設有一個5x5的feature map,我們可以直接用一個5x5的filter對其做卷積得到1個值,也可以通過兩個3x3的filter對其做卷積得到1個值,但相較於前者,后者有更少地參數:3x3x2=18。前者為5x5=25。可以減少的參數量為:(25-18)/25=28%。
在此基礎上,論文又提出可以使用使用非對稱的卷積核來替代較大的卷積核。如下圖所示:
對於一個3x3的卷積核,可以使用一個1x3和一個3x1的組合來替代。一般化地話,可以使用1xn和nx1替代nxn的卷積核。
輔助分類器
輔助分類器即除了主分類器之外,還在網絡結構中的某一層,論文中為17x17x768的那一層,添加了一個分支用來做輔助分類。其思想來源於GoogleNet(Going deeper with convolutions) 。
網絡尺寸的有效減少
在論文中給出的網絡結構中,3xInception和5xInception以及5xInception和2xInception有一個尺寸的減少,其具體實現方法為如下所示:
這里一並給出相關的代碼實現:
def inception_grid_reduction_1(input,name=None): with tf.variable_scope(name) as scope: with tf.variable_scope("Branch_0"): branch_0=conv_inception(input,shape = [1,1,288,384],name = '0a_1x1') branch_0=conv_inception(branch_0,shape = [3,3,384,384],stride = [1,2,2,1],padding = 'VALID',name = '0b_3x3') with tf.variable_scope('Branch_1'): branch_1=conv_inception(input,shape = [1,1,288,64],name = '0b_1x1') branch_1=conv_inception(branch_1,shape = [3,3,64,96],name = '0b_3x3') branch_1=conv_inception(branch_1,shape = [3,3,96,96],stride = [1,2,2,1],padding = 'VALID',name = '0c_3x3') with tf.variable_scope('Branch_2'): branch_2=tf.nn.max_pool(input,ksize = (1,3,3,1),strides = [1,2,2,1],padding = 'VALID',name = 'maxpool_0a_3x3') inception_out=tf.concat([branch_0,branch_1,branch_2],3) c=1 # for debug return inception_out
其中conv_inception函數定義如下:
def conv_inception(input, shape, stride= [1,1,1,1], activation = True, padding = 'SAME', name = None): in_channel = shape[2] out_channel = shape[3] k_size = shape[0] with tf.variable_scope(name) as scope: kernel = _variable('conv_weights', shape = shape) conv = tf.nn.conv2d(input = input, filter = kernel, strides = stride, padding = padding) biases = _variable('biases', [out_channel]) bias = tf.nn.bias_add(conv, biases) if activation is True: conv_out = tf.nn.relu(bias, name = 'relu') else: conv_out = bias return conv_out
_variable定義如下:
def _variable(name, shape): """Helper to create a Variable stored on CPU memory. Args: name: name of the variable shape: list of ints Returns: Variable Tensor """ with tf.device('/gpu:0'): var = tf.get_variable(name, shape) return var
下面給出網絡中每一部分的解釋以及實現:
文章中的卷積部分就不講了,基本操作。主要講講inception部分怎么做。論文中共用到了三種Inception modules,即傳統的inception(如GoogleNet所示),以及使用了非對稱分解卷積核的inception,以及加入了filter expanded的inception。先說說傳統的,如圖所示:
這里Base的input size在網絡中對應為35x35x288,有4個分支,其中pool為平均池化-avgpool,最后將4個分支串到一起,其代碼實現如下:
def inception_block_tradition(input, name=None): with tf.variable_scope(name) as scope: with tf.variable_scope("Branch_0"): branch_0=conv_inception(input,shape = [1,1,288,64],name = '0a_1x1') with tf.variable_scope('Branch_1'): branch_1=conv_inception(input,shape = [1,1,288,48],name = '0a_1x1') branch_1=conv_inception(branch_1,shape = [5,5,48,64],name = '0b_5x5') with tf.variable_scope("Branch_2"): branch_2=conv_inception(input,shape = [1,1,288,64],name = '0a_1x1') branch_2=conv_inception(branch_2,shape = [3,3,64,96],name = '0b_3x3') with tf.variable_scope('Branch_3'): branch_3=tf.nn.avg_pool(input,ksize = (1,3,3,1),strides = [1,1,1,1],padding = 'SAME',name = 'Avgpool_0a_3x3') branch_3=conv_inception(branch_3,shape = [1,1,288,64],name = '0b_1x1') inception_out=tf.concat([branch_0,branch_1,branch_2,branch_3],3) b=1 # for debug return inception_out
接下來是使用了非對稱分解的Inception moduels,如下圖所示:
這里n=7,Base為17x17x768;pool為 3x3 stride為1的avgpool(同上);其代碼實現如下:
def inception_block_factorization(input,name=None): with tf.variable_scope(name) as scope: with tf.variable_scope('Branch_0'): branch_0=conv_inception(input,shape = [1,1,768,192],name = '0a_1x1') with tf.variable_scope('Branch_1'): branch_1=conv_inception(input,shape = [1,1,768,128],name = '0a_1x1') branch_1=conv_inception(branch_1,shape = [1,7,128,128],name = '0b_1x7') branch_1=conv_inception(branch_1,shape = [7,1,128,128],name = '0c_7x1') branch_1=conv_inception(branch_1,shape = [1,7,128,128],name = '0d_1x7') branch_1=conv_inception(branch_1,shape = [7,1,128,192],name = '0e_7x1') with tf.variable_scope('Branch_2'): branch_2=conv_inception(input,shape = [1,1,768,128],name = '0a_1x1') branch_2=conv_inception(branch_2,shape = [1,7,128,128],name = '0b_1x7') branch_2=conv_inception(branch_2,shape = [7,1,128,192],name = '0c_7x1') with tf.variable_scope('Branch_3'): branch_3=tf.nn.avg_pool(input,ksize = (1,3,3,1),strides = [1,1,1,1],padding = 'SAME',name = 'Avgpool_0a_3x3') branch_3=conv_inception(branch_3,shape = [1,1,768,192],name = '0b_1x1') inception_out=tf.concat([branch_0,branch_1,branch_2,branch_3],3) d=1 # for debug return inception_out
接下來使用了filter expanded的inception,如圖所示:
也是4個分支,pool同上。其代碼實現如下:
def inception_block_expanded(input,name=None): with tf.variable_scope(name) as scope: with tf.variable_scope('Branch_0'): branch_0=conv_inception(input,shape = [1,1,2048,320],name = '0a_1x1') with tf.variable_scope('Branch_1'): branch_1=conv_inception(input,shape = [1,1,2048,448],name = '0a_1x1') branch_1=conv_inception(branch_1,shape = [3,3,448,384],name = '0b_3x3') branch_1=tf.concat([conv_inception(branch_1,shape = [1,3,384,384],name = '0c_1x3'), conv_inception(branch_1,shape = [3,1,384,384],name = '0d_3x1')],3) with tf.variable_scope('Branch_2'): branch_2=conv_inception(input,shape = [1,1,2048,384],name = '0a_1x1') branch_2=tf.concat([conv_inception(branch_2,shape = [1,3,384,384],name = '0b_1x3'), conv_inception(branch_2,shape = [3,1,384,384],name = '0c_3x1')],3) with tf.variable_scope('Branch_3'): branch_3=tf.nn.avg_pool(input,ksize = (1,3,3,1),strides = [1,1,1,1],padding = 'SAME',name = 'Avgpool_0a_3x3') branch_3=conv_inception(branch_3,shape = [1,1,2048,192],name = '0b_1x1') inception_out=tf.concat([branch_0,branch_1,branch_2,branch_3],3) e=1 # for debug return inception_out
經過上述操作可得到8x8x2048的feature maps,根據論文中的結構,對其做池化操作並加入1x1的卷積得到我們最終需要的1x1xnum_class即可,其實現如下(不唯一):
with tf.variable_scope('Logits'): net=tf.nn.avg_pool(net,ksize = [8,8,2048,2048],strides = [1,1,1,1],padding = 'VALID',name = 'Avgpool_1a_8x8') # 1x1x2048 net=tf.nn.dropout(net,keep_prob = dropout_keep_prob,name = 'Dropout_1b') end_points['PreLogits']=net # 2048 logits=conv_inception(net,shape = [1,1,2048,num_classes],activation = False,name = 'conv_1c_1x1') end_points['Logits']=logits end_points['Predictions']=tf.nn.softmax(logits,name = 'Predictions') return logits,end_points
論文中提及到的優化方法有SGD和RMSProp。可以隨便選擇,論文中得到的最佳模型為使用了RMSProp的方法。
附上代碼下載地址:
PS:數據集需要自行提供。