TensorFlow2.0 教程8:圖像分類


TensorFlow 2.0 教程,這節開始是深度學習實踐  

       1.獲取Fashion MNIST數據集

  本指南使用Fashion MNIST數據集,該數據集包含10個類別中的70,000個灰度圖像。 圖像顯示了低分辨率(28 x 28像素)的單件服裝,如下所示:

  Fashion MNIST旨在替代經典的MNIST數據集,通常用作計算機視覺機器學習計划的“Hello,World”。

  我們將使用60,000張圖像來訓練網絡和10,000張圖像,以評估網絡學習圖像分類的准確程度。

  (train_images, train_labels), (test_images, test_labels) = keras.datasets.fashion_mnist.load_data()

  圖像是28x28 NumPy數組,像素值介於0到255之間。標簽是一個整數數組,范圍從0到9.這些對應於圖像所代表的服裝類別:

  Label  Class

  0  T-shirt/top

  1  Trouser

  2  Pullover

  3  Dress

  4  Coat

  5  Sandal

  6  Shirt

  7  Sneaker

  8  Bag

  9  Ankle boot

  每個圖像都映射到一個標簽。 由於類名不包含在數據集中,因此將它們存儲在此處以便在繪制圖像時使用:

  class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',

  'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

  2.探索數據

  讓我們在訓練模型之前探索數據集的格式。 以下顯示訓練集中有60,000個圖像,每個圖像表示為28 x 28像素:

  print(train_images.shape)

  print(train_labels.shape)

  print(test_images.shape)

  print(test_labels.shape)

  (60000, 28, 28)

  (60000,)

  (10000, 28, 28)

  (10000,)

  3.處理數據

  圖片展示

  plt.figure()

  plt.imshow(train_images[0])

  plt.colorbar()

  plt.grid(False)

  plt.show()

  train_images = train_images / 255.0

  test_images = test_images / 255.0

  plt.figure(figsize=(10,10))

  for i in range(25):

  plt.subplot(5,5,i+1)

  plt.xticks([])

  plt.yticks([])

  plt.grid(False)

  plt.imshow(train_images[i], cmap=plt.cm.binary)

  plt.xlabel(class_names[train_labels[i]])

  plt.show()

  4.構造網絡

  model = keras.Sequential(

  [

  layers.Flatten(input_shape=[28, 28]),

  layers.Dense(128, activation='relu'),

  layers.Dense(10, activation='softmax')

  ])

  model.compile(optimizer='adam',

  loss='sparse_categorical_crossentropy',

  metrics=['accuracy'])

  5.訓練與驗證

  model.fit(train_images, train_labels, epochs=5)

  Epoch 1/5

  60000/60000 [==============================] - 3s 58us/sample - loss: 0.4970 - accuracy: 0.8264

  Epoch 2/5

  60000/60000 [==============================] - 3s 43us/sample - loss: 0.3766 - accuracy: 0.8651

  Epoch 3/5

  60000/60000 [==============================] - 3s 42us/sample - loss: 0.3370 - accuracy: 0.8777

  Epoch 4/5

  60000/60000 [==============================] - 3s 42us/sample - loss: 0.3122 - accuracy: 0.8859

  Epoch 5/5

  60000/60000 [==============================] - 3s 42us/sample - loss: 0.2949 - accuracy: 0.8921

  model.evaluate(test_images, test_labels)

  [0.3623474566936493, 0.8737]

  6.預測

  predictions = model.predict(test_images)

  print(predictions[0])

  print(np.argmax(predictions[0]))

  print(test_labels[0])

  [2.1831402e-05 1.0357383e-06 1.0550731e-06 1.3231372e-06 8.0873624e-06

  2.6805745e-02 1.2466960e-05 1.6174167e-01 1.4259206e-04 8.1126428e-01]

  9

  9

  def plot_image(i, predictions_array, true_label, img):

  predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]

  plt.grid(False)

  plt.xticks([])

  plt.yticks([])

  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)

  if predicted_label == true_label:

  color = 'blue'

  else: 無錫人流多少錢 http://www.xaytsgyy.com/

  color = 'red'

  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],

  100*np.max(predictions_array),

  class_names[true_label]),

  color=color)

  def plot_value_array(i, predictions_array, true_label):

  predictions_array, true_label = predictions_array[i], true_label[i]

  plt.grid(False)

  plt.xticks([])

  plt.yticks([])

  thisplot = plt.bar(range(10), predictions_array, color="#777777")

  plt.ylim([0, 1])

  predicted_label = np.argmax(predictions_array)

  thisplot[predicted_label].set_color('red')

  thisplot[true_label].set_color('blue')

  i = 0

  plt.figure(figsize=(6,3))

  plt.subplot(1,2,1)

  plot_image(i, predictions, test_labels, test_images)

  plt.subplot(1,2,2)

  plot_value_array(i, predictions, test_labels)

  plt.show()

  

png

 

  # Plot the first X test images, their predicted label, and the true label

  # Color correct predictions in blue, incorrect predictions in red

  num_rows = 5

  num_cols = 3

  num_images = num_rows*num_cols

  plt.figure(figsize=(2*2*num_cols, 2*num_rows))

  for i in range(num_images):

  plt.subplot(num_rows, 2*num_cols, 2*i+1)

  plot_image(i, predictions, test_labels, test_images)

  plt.subplot(num_rows, 2*num_cols, 2*i+2)

  plot_value_array(i, predictions, test_labels)

  plt.show()

  img = test_images[0]

  img = (np.expand_dims(img,0))

  print(img.shape)

  predictions_single = model.predict(img)

  print(predictions_single)

  plot_value_array(0, predictions_single, test_labels)

  _ = plt.xticks(range(10), class_names, rotation=45)

  (1, 28, 28)

  [[2.1831380e-05 1.0357381e-06 1.0550700e-06 1.3231397e-06 8.0873460e-06

  2.6805779e-02 1.2466959e-05 1.6174166e-01 1.4259205e-04 8.1126422e-01]]

  

png


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM