在使用 torchvision.transforms進行數據處理時我們經常進行的操作是:
transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))
前面的(0.485,0.456,0.406)表示均值,分別對應的是RGB三個通道;后面的(0.229,0.224,0.225)則表示的是標准差
這上面的均值和標准差的值是ImageNet數據集計算出來的,所以很多人都使用它們
但是如果你想要計算自己的數據集的均值和標准差,讓其作為你的transforms.Normalize函數的參數的話可以進行下面的操作
代碼get_mean_std.py:
# coding:utf-8 import os import numpy as np from torchvision.datasets import ImageFolder import torchvision.transforms as transforms from dataloader import Dataloader from options import options import pickle """ 在訓練前先運行該函數獲得數據的均值和標准差 """ class Dataloader(): def __init__(self, opt): # 訓練,驗證,測試數據集文件夾名 self.opt = opt self.dirs = ['train', 'test', 'testing'] self.means = [0, 0, 0] self.stdevs = [0, 0, 0] self.transform = transforms.Compose([transforms.Resize(opt.isize), transforms.CenterCrop(opt.isize), transforms.ToTensor(),#數據值從[0,255]范圍轉為[0,1],相當於除以255操作 # transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225)) ]) # 因為這里使用的是ImageFolder,按文件夾給數據分類,一個文件夾為一類,label會自動標注好 self.dataset = {x: ImageFolder(os.path.join(opt.dataroot, x), self.transform) for x in self.dirs} def get_mean_std(self, type, mean_std_path): """ 計算數據集的均值和標准差 :param type: 使用的是那個數據集的數據,有'train', 'test', 'testing' :param mean_std_path: 計算出來的均值和標准差存儲的文件 :return: """ num_imgs = len(self.dataset[type]) for data in self.dataset[type]: img = data[0] for i in range(3): # 一個通道的均值和標准差 self.means[i] += img[i, :, :].mean() self.stdevs[i] += img[i, :, :].std() self.means = np.asarray(self.means) / num_imgs self.stdevs = np.asarray(self.stdevs) / num_imgs print("{} : normMean = {}".format(type, self.means)) print("{} : normstdevs = {}".format(type, self.stdevs)) # 將得到的均值和標准差寫到文件中,之后就能夠從中讀取 with open(mean_std_path, 'wb') as f: pickle.dump(self.means, f) pickle.dump(self.stdevs, f) print('pickle done') if __name__ == '__main__': opt = options().parse() dataloader = Dataloader(opt) for x in dataloader.dirs: mean_std_path = 'mean_std_value_' + x + '.pkl' dataloader.get_mean_std(x, mean_std_path)
然后再從相應的文件讀取均值和標准差放到dataloader.py的transforms.Normalize函數中即可:
# coding:utf-8 import os import torch import torchvision.transforms as transforms from torchvision.datasets import ImageFolder import numpy as np import pickle """ 用於加載訓練train、驗證test和測試數據testing """ class Dataloader(): def __init__(self, opt): # 訓練,驗證,測試數據集文件夾名 self.opt = opt self.dirs = ['train', 'test', 'testing'] # 均值和標准差存儲的文件路徑 self.mean_std_path = {x: 'mean_std_value_' + x + '.pkl' for x in self.dirs} # 初始化為0 self.means = {x: [0, 0, 0] for x in self.dirs} self.stdevs = {x: [0, 0, 0] for x in self.dirs} print(type(self.means['train'])) print(self.means) print(self.stdevs) for x in self.dirs: #如果存在則說明之前有獲取過均值和標准差 if os.path.exists(self.mean_std_path[x]): with open(self.mean_std_path[x], 'rb') as f: self.means[x] = pickle.load(f) self.stdevs[x] = pickle.load(f) print('pickle load done') print(self.means) print(self.stdevs) # 將相應的均值和標准差設置到transforms.Normalize函數中 self.transform = {x: transforms.Compose([transforms.Resize(opt.isize), transforms.CenterCrop(opt.isize), transforms.ToTensor(), transforms.Normalize(self.means[x], self.stdevs[x]), ]) for x in self.dirs} ...
