Variational Auto-encoder(VAE)變分自編碼器-Pytorch


 
         
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torchvision.utils import save_image

# 配置GPU或CPU設置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 創建目錄
# Create a directory if not exists
sample_dir = 'samples'
if not os.path.exists(sample_dir):
    os.makedirs(sample_dir)

# 超參數設置
# Hyper-parameters
image_size = 784
h_dim = 400
z_dim = 20
num_epochs = 15
batch_size = 128
learning_rate = 1e-3

# 獲取數據集
# MNIST dataset
dataset = torchvision.datasets.MNIST(root='./data',
                                     train=True,
                                     transform=transforms.ToTensor(),
                                     download=True)

# 數據加載,按照batch_size大小加載,並隨機打亂
data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                          batch_size=batch_size,
                                          shuffle=True)

# 定義VAE類
# VAE model
class VAE(nn.Module):
    def __init__(self, image_size=784, h_dim=400, z_dim=20):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(image_size, h_dim)
        self.fc2 = nn.Linear(h_dim, z_dim)
        self.fc3 = nn.Linear(h_dim, z_dim)
        self.fc4 = nn.Linear(z_dim, h_dim)
        self.fc5 = nn.Linear(h_dim, image_size)

    # 編碼  學習高斯分布均值與方差
    def encode(self, x):
        h = F.relu(self.fc1(x))
        return self.fc2(h), self.fc3(h)

    # 將高斯分布均值與方差參數重表示,生成隱變量z  若x~N(mu, var*var)分布,則(x-mu)/var=z~N(0, 1)分布
    def reparameterize(self, mu, log_var):
        std = torch.exp(log_var / 2)
        eps = torch.randn_like(std)
        return mu + eps * std
    # 解碼隱變量z
    def decode(self, z):
        h = F.relu(self.fc4(z))
        return F.sigmoid(self.fc5(h))

    # 計算重構值和隱變量z的分布參數
    def forward(self, x):
        mu, log_var = self.encode(x)# 從原始樣本x中學習隱變量z的分布,即學習服從高斯分布均值與方差
        z = self.reparameterize(mu, log_var)# 將高斯分布均值與方差參數重表示,生成隱變量z
        x_reconst = self.decode(z)# 解碼隱變量z,生成重構x’
        return x_reconst, mu, log_var# 返回重構值和隱變量的分布參數

# 構造VAE實例對象
model = VAE().to(device)
print(model)
# VAE(  (fc1): Linear(in_features=784, out_features=400, bias=True)
#       (fc2): Linear(in_features=400, out_features=20, bias=True)
#       (fc3): Linear(in_features=400, out_features=20, bias=True)
#       (fc4): Linear(in_features=20, out_features=400, bias=True)
#       (fc5): Linear(in_features=400, out_features=784, bias=True))

# 選擇優化器,並傳入VAE模型參數和學習率
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
#開始訓練
for epoch in range(num_epochs):
    for i, (x, _) in enumerate(data_loader):
        # 前向傳播
        x = x.to(device).view(-1, image_size)# 將batch_size*1*28*28 ---->batch_size*image_size  其中,image_size=1*28*28=784
        x_reconst, mu, log_var = model(x)# 將batch_size*748的x輸入模型進行前向傳播計算,重構值和服從高斯分布的隱變量z的分布參數(均值和方差)

        # 計算重構損失和KL散度
        # Compute reconstruction loss and kl divergence
        # For KL divergence, see Appendix B in VAE paper or http://yunjey47.tistory.com/43
        # 重構損失
        reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False)
        # KL散度
        kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())

        # 反向傳播與優化
        # 計算誤差(重構誤差和KL散度值)
        loss = reconst_loss + kl_div
        # 清空上一步的殘余更新參數值
        optimizer.zero_grad()
        # 誤差反向傳播, 計算參數更新值
        loss.backward()
        # 將參數更新值施加到VAE model的parameters上
        optimizer.step()
        # 每迭代一定步驟,打印結果值
        if (i + 1) % 10 == 0:
            print ("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}"
                   .format(epoch + 1, num_epochs, i + 1, len(data_loader), reconst_loss.item(), kl_div.item()))

    with torch.no_grad():
        # Save the sampled images
        # 保存采樣值
        # 生成隨機數 z
        z = torch.randn(batch_size, z_dim).to(device)# z的大小為batch_size * z_dim = 128*20
        # 對隨機數 z 進行解碼decode輸出
        out = model.decode(z).view(-1, 1, 28, 28)
        # 保存結果值
        save_image(out, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch + 1)))

        # Save the reconstructed images
        # 保存重構值
        # 將batch_size*748的x輸入模型進行前向傳播計算,獲取重構值out
        out, _, _ = model(x)
        # 將輸入與輸出拼接在一起輸出保存  batch_size*1*28*(28+28)=batch_size*1*28*56
        x_concat = torch.cat([x.view(-1, 1, 28, 28), out.view(-1, 1, 28, 28)], dim=3)
        save_image(x_concat, os.path.join(sample_dir, 'reconst-{}.png'.format(epoch + 1)))
 
        

 大概長這么個樣子:

附上一張結果圖:


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM