注:中文非直接翻譯英文,而是理解加工后的筆記,記錄英文僅為學其專業表述。
概述
Constraint optimization, or constraint programming(CP),約束優化(規划),用於在一個非常大的候選集合中找到可行解,其中的問題可以用任意約束來建模。
CP基於可行性(尋找可行解)而不是優化(尋找最優解),它更關注約束和變量,而不是目標函數。
SP-SAT Solver
CP-SAT求解器技術上優於傳統CP求解器。
The CP-SAT solver is technologically superior to the original CP solver and should be preferred in almost all situations.
為了增加運算速度,CP求解器處理的都是整數。
如果有非整數項約束,可以先將其乘一個整數,使其變成整數項。
If you begin with a problem that has constraints with non-integer terms, you need to first multiply those constraints by a sufficiently large integer so that all terms are integers
來看一個簡單例子:尋找可行解。
- 變量x,y,z,每個只能取值0,1,2。
- eg:
x = model.NewIntVar(0, num_vals - 1, 'x')
- eg:
- 約束條件:x ≠ y
- eg:
model.Add(x != y)
- eg:
核心步驟:
- 聲明模型
- 創建變量
- 創建約束條件
- 調用求解器
- 展示結果
from ortools.sat.python import cp_model
def SimpleSatProgram():
"""Minimal CP-SAT example to showcase calling the solver."""
# Creates the model.
model = cp_model.CpModel()
# Creates the variables.
num_vals = 3
x = model.NewIntVar(0, num_vals - 1, 'x')
y = model.NewIntVar(0, num_vals - 1, 'y')
z = model.NewIntVar(0, num_vals - 1, 'z')
# Creates the constraints.
model.Add(x != y)
# Creates a solver and solves the model.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.FEASIBLE:
print('x = %i' % solver.Value(x))
print('y = %i' % solver.Value(y))
print('z = %i' % solver.Value(z))
SimpleSatProgram()
運行得
x = 1
y = 0
z = 0
status = solver.Solve(model)
返回值狀態含義:
- OPTIMAL 找到了最優解。
- FEASIBLE 找到了一個可行解,不過不一定是最優解。
- INFEASIBLE 無可行解。
- MODEL_INVALID 給定的CpModelProto沒有通過驗證步驟。可以通過調用
ValidateCpModel(model_proto)
獲得詳細的錯誤。 - UNKNOWN 由於達到了搜索限制,模型的狀態未知。
加目標函數,尋找最優解
假設目標函數是求x + 2y + 3z
的最大值,在求解器前加
model.Maximize(x + 2 * y + 3 * z)
並替換展示條件
if status == cp_model.OPTIMAL:
運行得
x = 1
y = 2
z = 2
加回調函數,展示所有可行解
去掉目標函數,加上打印回調函數
from ortools.sat.python import cp_model
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
def on_solution_callback(self):
self.__solution_count += 1
for v in self.__variables:
print('%s=%i' % (v, self.Value(v)), end=' ')
print()
def solution_count(self):
return self.__solution_count
def SearchForAllSolutionsSampleSat():
"""Showcases calling the solver to search for all solutions."""
# Creates the model.
model = cp_model.CpModel()
# Creates the variables.
num_vals = 3
x = model.NewIntVar(0, num_vals - 1, 'x')
y = model.NewIntVar(0, num_vals - 1, 'y')
z = model.NewIntVar(0, num_vals - 1, 'z')
# Create the constraints.
model.Add(x != y)
# Create a solver and solve.
solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinter([x, y, z])
status = solver.SearchForAllSolutions(model, solution_printer)
print('Status = %s' % solver.StatusName(status))
print('Number of solutions found: %i' % solution_printer.solution_count())
SearchForAllSolutionsSampleSat()
運行得
x=0 y=1 z=0
x=1 y=2 z=0
x=1 y=2 z=1
x=1 y=2 z=2
x=1 y=0 z=2
x=1 y=0 z=1
x=2 y=0 z=1
x=2 y=1 z=1
x=2 y=1 z=2
x=2 y=0 z=2
x=0 y=1 z=2
x=0 y=1 z=1
x=0 y=2 z=1
x=0 y=2 z=2
x=1 y=0 z=0
x=2 y=0 z=0
x=2 y=1 z=0
x=0 y=2 z=0
Status = OPTIMAL
Number of solutions found: 18
展示 intermediate solutions
與展示所有可行解的異同主要在:
- 加
model.Maximize(x + 2 * y + 3 * z)
- 換
status = solver.SolveWithSolutionCallback(model, solution_printer)
輸出結果為:
x=0 y=1 z=0
x=0 y=2 z=0
x=0 y=2 z=1
x=0 y=2 z=2
x=1 y=2 z=2
Status = OPTIMAL
Number of solutions found: 5
與官網結果不一致。https://developers.google.cn/optimization/cp/cp_solver?hl=es-419#run_intermediate_sol
應該與python和or-tools版本有關。
Original CP Solver
一些特殊的小問題場景,傳統CP求解器性能優於CP-SAT。
區別於CP-SAT的包,傳統CP求解器用的是from ortools.constraint_solver import pywrapcp
打印方式也有區別,傳統CP求解器打印方式是用while solver.NextSolution():
來遍歷打印。
構造器下例子中只用了一個phase,復雜問題可以用多個phase,以便於在不同階段用不同的搜索策略。Phase()方法中的三個參數:
- vars 包含了該問題的變量,下例是 [x, y, z]
- IntVarStrategy 選擇下一個unbound變量的規則。默認值 CHOOSE_FIRST_UNBOUND,表示每個步驟中,求解器選擇變量出現順序中的第一個unbound變量。
- IntValueStrategy 選擇下一個值的規則。默認值 ASSIGN_MIN_VALUE,表示選擇還沒有試的變量中的最小值。另一個選項 ASSIGN_MAX_VALUE 反之。
import sys
from ortools.constraint_solver import pywrapcp
def main():
solver = pywrapcp.Solver("simple_example")
# Create the variables.
num_vals = 3
x = solver.IntVar(0, num_vals - 1, "x")
y = solver.IntVar(0, num_vals - 1, "y")
z = solver.IntVar(0, num_vals - 1, "z")
# Create the constraints.
solver.Add(x != y)
# Call the solver.
db = solver.Phase([x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE)
solver.Solve(db)
print_solution(solver, x, y, z)
def print_solution(solver, x, y, z):
count = 0
while solver.NextSolution():
count += 1
print("x =", x.Value(), "y =", y.Value(), "z =", z.Value())
print("\nNumber of solutions found:", count)
if __name__ == "__main__":
main()
打印結果:
x = 0 y = 1 z = 0
x = 0 y = 1 z = 1
x = 0 y = 1 z = 2
x = 0 y = 2 z = 0
x = 0 y = 2 z = 1
x = 0 y = 2 z = 2
x = 1 y = 0 z = 0
x = 1 y = 0 z = 1
x = 1 y = 0 z = 2
x = 1 y = 2 z = 0
x = 1 y = 2 z = 1
x = 1 y = 2 z = 2
x = 2 y = 0 z = 0
x = 2 y = 0 z = 1
x = 2 y = 0 z = 2
x = 2 y = 1 z = 0
x = 2 y = 1 z = 1
x = 2 y = 1 z = 2
Number of solutions found: 18
Cryptarithmetic Puzzles
Cryptarithmetic Puzzles 是一種數學問題,每個字母代表唯一數字,目標是找到這些數字,使給定方程成立。
由
CP
+ IS
+ FUN
--------
= TRUE
找到
23
+ 74
+ 968
--------
= 1065
這是其中一個答案,還可以有其他解。
用 CP-SAT 或者 傳統CP 求解器均可。
建模
約束構建如下:
- 等式 CP + IS + FUN = TRUE
- 每個字母代表一個數字
- C、I、F、T不能為0,因為開頭不寫0
這個問題官方解法代碼有誤,回頭研究。
The N-queens Problem
n皇后問題是個很經典的問題。如果用深度優先搜索的解法見 link
In chess, a queen can attack horizontally, vertically, and diagonally. The N-queens problem asks:
How can N queens be placed on an NxN chessboard so that no two of them attack each other?
在國際象棋中,皇后可以水平、垂直和對角攻擊。N-queens問題即: 如何把N個皇后放在一個NxN棋盤上,使它們不會互相攻擊?
這並不是最優化問題,我們是要找到所有可行解。
CP求解器是嘗試所有的可能來找到可行解。
傳播和回溯
約束優化有兩個關鍵元素:
- Propagation,傳播可以加速搜索過程,因為減少了求解器繼續做無謂的嘗試。每次求解器給變量賦值時,約束條件都對為賦值的變量增加限制。
- Backtracking,回溯發生在繼續向下搜索也肯定無解的情況下,故需要回到上一步嘗試未試過的值。
構造約束:
- 約束禁止皇后區位於同一行、列或對角線上
queens[i] = j
means there is a queen in column i and row j.- 設置在不同行列,
model.AddAllDifferent(queens)
- 設置兩個皇后不能在同一對角線,更為復雜些。
- 如果對角線是從左到右下坡的,則斜率為-1(等同於有直線 y = -x + b),故滿足
queens(i) + i
具有相同值的所有 queens(i) 在一條對角線上。 - 如果對角線是從左到右上坡的,則斜率為 1(等同於有直線 y = x + b),故滿足
queens(i) - i
具有相同值的所有 queens(i) 在一條對角線上。
- 如果對角線是從左到右下坡的,則斜率為-1(等同於有直線 y = -x + b),故滿足
import sys
from ortools.sat.python import cp_model
def main(board_size):
model = cp_model.CpModel()
# Creates the variables.
# The array index is the column, and the value is the row.
queens = [model.NewIntVar(0, board_size - 1, 'x%i' % i)
for i in range(board_size)]
# Creates the constraints.
# The following sets the constraint that all queens are in different rows.
model.AddAllDifferent(queens)
# Note: all queens must be in different columns because the indices of queens are all different.
# The following sets the constraint that no two queens can be on the same diagonal.
for i in range(board_size):
# Note: is not used in the inner loop.
diag1 = []
diag2 = []
for j in range(board_size):
# Create variable array for queens(j) + j.
q1 = model.NewIntVar(0, 2 * board_size, 'diag1_%i' % i)
diag1.append(q1)
model.Add(q1 == queens[j] + j)
# Create variable array for queens(j) - j.
q2 = model.NewIntVar(-board_size, board_size, 'diag2_%i' % i)
diag2.append(q2)
model.Add(q2 == queens[j] - j)
model.AddAllDifferent(diag1)
model.AddAllDifferent(diag2)
### Solve model.
solver = cp_model.CpSolver()
solution_printer = SolutionPrinter(queens)
status = solver.SearchForAllSolutions(model, solution_printer)
print()
print('Solutions found : %i' % solution_printer.SolutionCount())
class SolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
def OnSolutionCallback(self):
self.__solution_count += 1
for v in self.__variables:
print('%s = %i' % (v, self.Value(v)), end = ' ')
print()
def SolutionCount(self):
return self.__solution_count
class DiagramPrinter(cp_model.CpSolverSolutionCallback):
def __init__(self, variables):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
def OnSolutionCallback(self):
self.__solution_count += 1
for v in self.__variables:
queen_col = int(self.Value(v))
board_size = len(self.__variables)
# Print row with queen.
for j in range(board_size):
if j == queen_col:
# There is a queen in column j, row i.
print("Q", end=" ")
else:
print("_", end=" ")
print()
print()
def SolutionCount(self):
return self.__solution_count
if __name__ == '__main__':
# By default, solve the 8x8 problem.
board_size = 8
if len(sys.argv) > 1:
board_size = int(sys.argv[1])
main(board_size)
欲圖形化打印,調用SolutionPrinter
處換成DiagramPrinter
。
Setting solver limits
時間限制
eg:
solver.parameters.max_time_in_seconds = 10.0
找到指定數量的解后停止搜索
eg:
from ortools.sat.python import cp_model
class VarArraySolutionPrinterWithLimit(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables, limit):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
self.__solution_limit = limit
def on_solution_callback(self):
self.__solution_count += 1
for v in self.__variables:
print('%s=%i' % (v, self.Value(v)), end=' ')
print()
if self.__solution_count >= self.__solution_limit:
print('Stop search after %i solutions' % self.__solution_limit)
self.StopSearch()
def solution_count(self):
return self.__solution_count
def StopAfterNSolutionsSampleSat():
"""Showcases calling the solver to search for small number of solutions."""
# Creates the model.
model = cp_model.CpModel()
# Creates the variables.
num_vals = 3
x = model.NewIntVar(0, num_vals - 1, 'x')
y = model.NewIntVar(0, num_vals - 1, 'y')
z = model.NewIntVar(0, num_vals - 1, 'z')
# Create a solver and solve.
solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinterWithLimit([x, y, z], 5)
status = solver.SearchForAllSolutions(model, solution_printer)
print('Status = %s' % solver.StatusName(status))
print('Number of solutions found: %i' % solution_printer.solution_count())
assert solution_printer.solution_count() == 5
StopAfterNSolutionsSampleSat()