目錄
Feature maps
- 單通道

- rgb三通道

- rgb三通道合成

- 數字2的卷積成像圖

Why not Linear
- 4 Layers: [784, 256, 256, 256, 10]

335k or 1.3MB

em...
-
486 PC + AT&T DSP32C
- 256KB
- 66Mhz
-
Batch X
-
Gradient Cache
-
etc.

Receptive Field

Fully connnected

Partial connected

Locally connected

Rethink Linear layer

Fully VS Lovally

Weight sharing

- 三階張量的卷積

-
6 Layers
- ~60k parameters
-
4 layers, 335k

Why call Convolution?

2D Convolution
\[y(t) = x(t)*h(t) = \int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau \]

Convolution in Computer Vision

- 模糊化

- 邊緣檢測

CNN on feature maps

