哈夫曼樹結構和帶權路徑長度計算


什么是哈夫曼樹呢?

哈夫曼樹是一種帶權路徑長度最短的二叉樹,也稱為最優二叉樹。下面用一幅圖來說明。

 

它們的帶權路徑長度分別為:

圖a: WPL=5*2+7*2+2*2+13*2=54

圖b: WPL=5*3+2*3+7*2+13*1=48

可見,圖b的帶權路徑長度較小,我們可以證明圖b就是哈夫曼樹(也稱為最優二叉樹)。

哈夫曼樹構建教程

例:對於給定的一組權值w={1,4,9,16,25,36,49,64,81,100},構造具有最小帶權外部路徑長度的擴充二叉樹,並求出他的的帶權外部路徑長度。

解:1、首先我們對這一組數字進行排序。規則是從小到大排列(題目已排序好)。

      2、在這些數中 選擇兩個最小的數字(哈夫曼樹是從下往上排列的)寫在紙上。如下圖所示

3、用一個類似於樹杈的“樹枝”連接上兩個最小的數。在頂點處計算出這兩個數字的和 並寫在上面。然后再比較剩下的數字這個和的大小,再取出兩個最小的數字進行排列

4、如上圖中30,25的和為55,已經大於36,49.所以這個時候開始有分支,用36,49再構造一個分支,如下圖。

  5、最后將分支合並成一個二叉樹,如下圖

6、這樣,二叉樹結構就構建好了。

 

帶權外部路徑長度計算;

WPL=2*100 + 3*64 + 2*81 + 4*25 + 2*49 + 2*36 + 5*16 + 6*9 + 7*1 + 7*4 =993

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM