Thread類是Android為線程操作而做的一個封裝。代碼在Thread.cpp中,其中還封裝了一些與線程同步相關的類。
Thread類
Thread類的構造函數中的有一個canCallJava
Thread.cpp
/system/core/libutils/Threads.cpp
/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // #define LOG_NDEBUG 0 #define LOG_TAG "libutils.threads" #include <assert.h> #include <errno.h> #include <memory.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #if !defined(_WIN32) # include <pthread.h> # include <sched.h> # include <sys/resource.h> #else # include <windows.h> # include <stdint.h> # include <process.h> # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW #endif #if defined(__linux__) #include <sys/prctl.h> #endif #include <utils/threads.h> #include <utils/Log.h> #include <cutils/sched_policy.h> #ifdef HAVE_ANDROID_OS # define __android_unused #else # define __android_unused __attribute__((__unused__)) #endif /* * =========================================================================== * Thread wrappers * =========================================================================== */ using namespace android; // ---------------------------------------------------------------------------- #if !defined(_WIN32) // ---------------------------------------------------------------------------- /* * Create and run a new thread. * * We create it "detached", so it cleans up after itself. */ typedef void* (*android_pthread_entry)(void*); struct thread_data_t { thread_func_t entryFunction; void* userData; int priority; char * threadName; // we use this trampoline when we need to set the priority with // nice/setpriority, and name with prctl. static int trampoline(const thread_data_t* t) { thread_func_t f = t->entryFunction; void* u = t->userData; int prio = t->priority; char * name = t->threadName; delete t; setpriority(PRIO_PROCESS, 0, prio); if (prio >= ANDROID_PRIORITY_BACKGROUND) { set_sched_policy(0, SP_BACKGROUND); } else { set_sched_policy(0, SP_FOREGROUND); } if (name) { androidSetThreadName(name); free(name); } return f(u); } }; void androidSetThreadName(const char* name) { #if defined(__linux__) // Mac OS doesn't have this, and we build libutil for the host too int hasAt = 0; int hasDot = 0; const char *s = name; while (*s) { if (*s == '.') hasDot = 1; else if (*s == '@') hasAt = 1; s++; } int len = s - name; if (len < 15 || hasAt || !hasDot) { s = name; } else { s = name + len - 15; } prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0); #endif } int androidCreateRawThreadEtc(android_thread_func_t entryFunction, void *userData, const char* threadName __android_unused, int32_t threadPriority, size_t threadStackSize, android_thread_id_t *threadId) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); #ifdef HAVE_ANDROID_OS /* valgrind is rejecting RT-priority create reqs */ if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) { // Now that the pthread_t has a method to find the associated // android_thread_id_t (pid) from pthread_t, it would be possible to avoid // this trampoline in some cases as the parent could set the properties // for the child. However, there would be a race condition because the // child becomes ready immediately, and it doesn't work for the name. // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was // proposed but not yet accepted. thread_data_t* t = new thread_data_t; t->priority = threadPriority; t->threadName = threadName ? strdup(threadName) : NULL; t->entryFunction = entryFunction; t->userData = userData; entryFunction = (android_thread_func_t)&thread_data_t::trampoline; userData = t; } #endif if (threadStackSize) { pthread_attr_setstacksize(&attr, threadStackSize); } errno = 0; pthread_t thread; int result = pthread_create(&thread, &attr, (android_pthread_entry)entryFunction, userData); pthread_attr_destroy(&attr); if (result != 0) { ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n" "(android threadPriority=%d)", entryFunction, result, errno, threadPriority); return 0; } // Note that *threadID is directly available to the parent only, as it is // assigned after the child starts. Use memory barrier / lock if the child // or other threads also need access. if (threadId != NULL) { *threadId = (android_thread_id_t)thread; // XXX: this is not portable } return 1; } #ifdef HAVE_ANDROID_OS static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread) { return (pthread_t) thread; } #endif android_thread_id_t androidGetThreadId() { return (android_thread_id_t)pthread_self(); } // ---------------------------------------------------------------------------- #else // !defined(_WIN32) // ---------------------------------------------------------------------------- /* * Trampoline to make us __stdcall-compliant. * * We're expected to delete "vDetails" when we're done. */ struct threadDetails { int (*func)(void*); void* arg; }; static __stdcall unsigned int threadIntermediary(void* vDetails) { struct threadDetails* pDetails = (struct threadDetails*) vDetails; int result; result = (*(pDetails->func))(pDetails->arg); delete pDetails; ALOG(LOG_VERBOSE, "thread", "thread exiting\n"); return (unsigned int) result; } /* * Create and run a new thread. */ static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id) { HANDLE hThread; struct threadDetails* pDetails = new threadDetails; // must be on heap unsigned int thrdaddr; pDetails->func = fn; pDetails->arg = arg; #if defined(HAVE__BEGINTHREADEX) hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0, &thrdaddr); if (hThread == 0) #elif defined(HAVE_CREATETHREAD) hThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) threadIntermediary, (void*) pDetails, 0, (DWORD*) &thrdaddr); if (hThread == NULL) #endif { ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n"); return false; } #if defined(HAVE_CREATETHREAD) /* close the management handle */ CloseHandle(hThread); #endif if (id != NULL) { *id = (android_thread_id_t)thrdaddr; } return true; } int androidCreateRawThreadEtc(android_thread_func_t fn, void *userData, const char* /*threadName*/, int32_t /*threadPriority*/, size_t /*threadStackSize*/, android_thread_id_t *threadId) { return doCreateThread( fn, userData, threadId); } android_thread_id_t androidGetThreadId() { return (android_thread_id_t)GetCurrentThreadId(); } // ---------------------------------------------------------------------------- #endif // !defined(_WIN32) // ---------------------------------------------------------------------------- int androidCreateThread(android_thread_func_t fn, void* arg) { return createThreadEtc(fn, arg); } int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id) { return createThreadEtc(fn, arg, "android:unnamed_thread", PRIORITY_DEFAULT, 0, id); } static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc; int androidCreateThreadEtc(android_thread_func_t entryFunction, void *userData, const char* threadName, int32_t threadPriority, size_t threadStackSize, android_thread_id_t *threadId) { return gCreateThreadFn(entryFunction, userData, threadName, threadPriority, threadStackSize, threadId); } void androidSetCreateThreadFunc(android_create_thread_fn func) { gCreateThreadFn = func; } #ifdef HAVE_ANDROID_OS int androidSetThreadPriority(pid_t tid, int pri) { int rc = 0; #if !defined(_WIN32) int lasterr = 0; if (pri >= ANDROID_PRIORITY_BACKGROUND) { rc = set_sched_policy(tid, SP_BACKGROUND); } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) { rc = set_sched_policy(tid, SP_FOREGROUND); } if (rc) { lasterr = errno; } if (setpriority(PRIO_PROCESS, tid, pri) < 0) { rc = INVALID_OPERATION; } else { errno = lasterr; } #endif return rc; } int androidGetThreadPriority(pid_t tid) { #if !defined(_WIN32) return getpriority(PRIO_PROCESS, tid); #else return ANDROID_PRIORITY_NORMAL; #endif } #endif namespace android { /* * =========================================================================== * Mutex class * =========================================================================== */ #if !defined(_WIN32) // implemented as inlines in threads.h #else Mutex::Mutex() { HANDLE hMutex; assert(sizeof(hMutex) == sizeof(mState)); hMutex = CreateMutex(NULL, FALSE, NULL); mState = (void*) hMutex; } Mutex::Mutex(const char* name) { // XXX: name not used for now HANDLE hMutex; assert(sizeof(hMutex) == sizeof(mState)); hMutex = CreateMutex(NULL, FALSE, NULL); mState = (void*) hMutex; } Mutex::Mutex(int type, const char* name) { // XXX: type and name not used for now HANDLE hMutex; assert(sizeof(hMutex) == sizeof(mState)); hMutex = CreateMutex(NULL, FALSE, NULL); mState = (void*) hMutex; } Mutex::~Mutex() { CloseHandle((HANDLE) mState); } status_t Mutex::lock() { DWORD dwWaitResult; dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE); return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR; } void Mutex::unlock() { if (!ReleaseMutex((HANDLE) mState)) ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n"); } status_t Mutex::tryLock() { DWORD dwWaitResult; dwWaitResult = WaitForSingleObject((HANDLE) mState, 0); if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT) ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n"); return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1; } #endif // !defined(_WIN32) /* * =========================================================================== * Condition class * =========================================================================== */ #if !defined(_WIN32) // implemented as inlines in threads.h #else /* * Windows doesn't have a condition variable solution. It's possible * to create one, but it's easy to get it wrong. For a discussion, and * the origin of this implementation, see: * * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html * * The implementation shown on the page does NOT follow POSIX semantics. * As an optimization they require acquiring the external mutex before * calling signal() and broadcast(), whereas POSIX only requires grabbing * it before calling wait(). The implementation here has been un-optimized * to have the correct behavior. */ typedef struct WinCondition { // Number of waiting threads. int waitersCount; // Serialize access to waitersCount. CRITICAL_SECTION waitersCountLock; // Semaphore used to queue up threads waiting for the condition to // become signaled. HANDLE sema; // An auto-reset event used by the broadcast/signal thread to wait // for all the waiting thread(s) to wake up and be released from // the semaphore. HANDLE waitersDone; // This mutex wouldn't be necessary if we required that the caller // lock the external mutex before calling signal() and broadcast(). // I'm trying to mimic pthread semantics though. HANDLE internalMutex; // Keeps track of whether we were broadcasting or signaling. This // allows us to optimize the code if we're just signaling. bool wasBroadcast; status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime) { // Increment the wait count, avoiding race conditions. EnterCriticalSection(&condState->waitersCountLock); condState->waitersCount++; //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n", // condState->waitersCount, getThreadId()); LeaveCriticalSection(&condState->waitersCountLock); DWORD timeout = INFINITE; if (abstime) { nsecs_t reltime = *abstime - systemTime(); if (reltime < 0) reltime = 0; timeout = reltime/1000000; } // Atomically release the external mutex and wait on the semaphore. DWORD res = SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE); //printf("+++ wait: awake (tid=%ld)\n", getThreadId()); // Reacquire lock to avoid race conditions. EnterCriticalSection(&condState->waitersCountLock); // No longer waiting. condState->waitersCount--; // Check to see if we're the last waiter after a broadcast. bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0); //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n", // lastWaiter, condState->wasBroadcast, condState->waitersCount); LeaveCriticalSection(&condState->waitersCountLock); // If we're the last waiter thread during this particular broadcast // then signal broadcast() that we're all awake. It'll drop the // internal mutex. if (lastWaiter) { // Atomically signal the "waitersDone" event and wait until we // can acquire the internal mutex. We want to do this in one step // because it ensures that everybody is in the mutex FIFO before // any thread has a chance to run. Without it, another thread // could wake up, do work, and hop back in ahead of us. SignalObjectAndWait(condState->waitersDone, condState->internalMutex, INFINITE, FALSE); } else { // Grab the internal mutex. WaitForSingleObject(condState->internalMutex, INFINITE); } // Release the internal and grab the external. ReleaseMutex(condState->internalMutex); WaitForSingleObject(hMutex, INFINITE); return res == WAIT_OBJECT_0 ? NO_ERROR : -1; } } WinCondition; /* * Constructor. Set up the WinCondition stuff. */ Condition::Condition() { WinCondition* condState = new WinCondition; condState->waitersCount = 0; condState->wasBroadcast = false; // semaphore: no security, initial value of 0 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL); InitializeCriticalSection(&condState->waitersCountLock); // auto-reset event, not signaled initially condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL); // used so we don't have to lock external mutex on signal/broadcast condState->internalMutex = CreateMutex(NULL, FALSE, NULL); mState = condState; } /* * Destructor. Free Windows resources as well as our allocated storage. */ Condition::~Condition() { WinCondition* condState = (WinCondition*) mState; if (condState != NULL) { CloseHandle(condState->sema); CloseHandle(condState->waitersDone); delete condState; } } status_t Condition::wait(Mutex& mutex) { WinCondition* condState = (WinCondition*) mState; HANDLE hMutex = (HANDLE) mutex.mState; return ((WinCondition*)mState)->wait(condState, hMutex, NULL); } status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime) { WinCondition* condState = (WinCondition*) mState; HANDLE hMutex = (HANDLE) mutex.mState; nsecs_t absTime = systemTime()+reltime; return ((WinCondition*)mState)->wait(condState, hMutex, &absTime); } /* * Signal the condition variable, allowing one thread to continue. */ void Condition::signal() { WinCondition* condState = (WinCondition*) mState; // Lock the internal mutex. This ensures that we don't clash with // broadcast(). WaitForSingleObject(condState->internalMutex, INFINITE); EnterCriticalSection(&condState->waitersCountLock); bool haveWaiters = (condState->waitersCount > 0); LeaveCriticalSection(&condState->waitersCountLock); // If no waiters, then this is a no-op. Otherwise, knock the semaphore // down a notch. if (haveWaiters) ReleaseSemaphore(condState->sema, 1, 0); // Release internal mutex. ReleaseMutex(condState->internalMutex); } /* * Signal the condition variable, allowing all threads to continue. * * First we have to wake up all threads waiting on the semaphore, then * we wait until all of the threads have actually been woken before * releasing the internal mutex. This ensures that all threads are woken. */ void Condition::broadcast() { WinCondition* condState = (WinCondition*) mState; // Lock the internal mutex. This keeps the guys we're waking up // from getting too far. WaitForSingleObject(condState->internalMutex, INFINITE); EnterCriticalSection(&condState->waitersCountLock); bool haveWaiters = false; if (condState->waitersCount > 0) { haveWaiters = true; condState->wasBroadcast = true; } if (haveWaiters) { // Wake up all the waiters. ReleaseSemaphore(condState->sema, condState->waitersCount, 0); LeaveCriticalSection(&condState->waitersCountLock); // Wait for all awakened threads to acquire the counting semaphore. // The last guy who was waiting sets this. WaitForSingleObject(condState->waitersDone, INFINITE); // Reset wasBroadcast. (No crit section needed because nobody // else can wake up to poke at it.) condState->wasBroadcast = 0; } else { // nothing to do LeaveCriticalSection(&condState->waitersCountLock); } // Release internal mutex. ReleaseMutex(condState->internalMutex); } #endif // !defined(_WIN32) // ---------------------------------------------------------------------------- /* * This is our thread object! */ Thread::Thread(bool canCallJava) : mCanCallJava(canCallJava), mThread(thread_id_t(-1)), mLock("Thread::mLock"), mStatus(NO_ERROR), mExitPending(false), mRunning(false) #ifdef HAVE_ANDROID_OS , mTid(-1) #endif { } Thread::~Thread() { } status_t Thread::readyToRun() { return NO_ERROR; } status_t Thread::run(const char* name, int32_t priority, size_t stack) { Mutex::Autolock _l(mLock); if (mRunning) { // thread already started return INVALID_OPERATION; } // reset status and exitPending to their default value, so we can // try again after an error happened (either below, or in readyToRun()) mStatus = NO_ERROR; mExitPending = false; mThread = thread_id_t(-1); // hold a strong reference on ourself mHoldSelf = this; mRunning = true; bool res; if (mCanCallJava) { res = createThreadEtc(_threadLoop, this, name, priority, stack, &mThread); } else { res = androidCreateRawThreadEtc(_threadLoop, this, name, priority, stack, &mThread); } if (res == false) { mStatus = UNKNOWN_ERROR; // something happened! mRunning = false; mThread = thread_id_t(-1); mHoldSelf.clear(); // "this" may have gone away after this. return UNKNOWN_ERROR; } // Do not refer to mStatus here: The thread is already running (may, in fact // already have exited with a valid mStatus result). The NO_ERROR indication // here merely indicates successfully starting the thread and does not // imply successful termination/execution. return NO_ERROR; // Exiting scope of mLock is a memory barrier and allows new thread to run } int Thread::_threadLoop(void* user) { Thread* const self = static_cast<Thread*>(user); sp<Thread> strong(self->mHoldSelf); wp<Thread> weak(strong); self->mHoldSelf.clear(); #ifdef HAVE_ANDROID_OS // this is very useful for debugging with gdb self->mTid = gettid(); #endif bool first = true; do { bool result; if (first) { first = false; self->mStatus = self->readyToRun(); result = (self->mStatus == NO_ERROR); if (result && !self->exitPending()) { // Binder threads (and maybe others) rely on threadLoop // running at least once after a successful ::readyToRun() // (unless, of course, the thread has already been asked to exit // at that point). // This is because threads are essentially used like this: // (new ThreadSubclass())->run(); // The caller therefore does not retain a strong reference to // the thread and the thread would simply disappear after the // successful ::readyToRun() call instead of entering the // threadLoop at least once. result = self->threadLoop(); } } else { result = self->threadLoop(); } // establish a scope for mLock { Mutex::Autolock _l(self->mLock); if (result == false || self->mExitPending) { self->mExitPending = true; self->mRunning = false; // clear thread ID so that requestExitAndWait() does not exit if // called by a new thread using the same thread ID as this one. self->mThread = thread_id_t(-1); // note that interested observers blocked in requestExitAndWait are // awoken by broadcast, but blocked on mLock until break exits scope self->mThreadExitedCondition.broadcast(); break; } } // Release our strong reference, to let a chance to the thread // to die a peaceful death. strong.clear(); // And immediately, re-acquire a strong reference for the next loop strong = weak.promote(); } while(strong != 0); return 0; } void Thread::requestExit() { Mutex::Autolock _l(mLock); mExitPending = true; } status_t Thread::requestExitAndWait() { Mutex::Autolock _l(mLock); if (mThread == getThreadId()) { ALOGW( "Thread (this=%p): don't call waitForExit() from this " "Thread object's thread. It's a guaranteed deadlock!", this); return WOULD_BLOCK; } mExitPending = true; while (mRunning == true) { mThreadExitedCondition.wait(mLock); } // This next line is probably not needed any more, but is being left for // historical reference. Note that each interested party will clear flag. mExitPending = false; return mStatus; } status_t Thread::join() { Mutex::Autolock _l(mLock); if (mThread == getThreadId()) { ALOGW( "Thread (this=%p): don't call join() from this " "Thread object's thread. It's a guaranteed deadlock!", this); return WOULD_BLOCK; } while (mRunning == true) { mThreadExitedCondition.wait(mLock); } return mStatus; } bool Thread::isRunning() const { Mutex::Autolock _l(mLock); return mRunning; } #ifdef HAVE_ANDROID_OS pid_t Thread::getTid() const { // mTid is not defined until the child initializes it, and the caller may need it earlier Mutex::Autolock _l(mLock); pid_t tid; if (mRunning) { pthread_t pthread = android_thread_id_t_to_pthread(mThread); tid = pthread_gettid_np(pthread); } else { ALOGW("Thread (this=%p): getTid() is undefined before run()", this); tid = -1; } return tid; } #endif bool Thread::exitPending() const { Mutex::Autolock _l(mLock); return mExitPending; } }; // namespace android
http://androidxref.com/6.0.0_r1/xref/system/core/libutils/Threads.cpp
status_t Thread::run(const char* name, int32_tpriority, size_t stack) { Mutex::Autolock_l(mLock); .... //如果mCanCallJava為真,則調用createThreadEtc函數,線程函數是_threadLoop。 //_threadLoop是Thread.cpp中定義的一個函數。 if(mCanCallJava) { res = createThreadEtc(_threadLoop,this, name, priority, stack,&mThread); } else{ res = androidCreateRawThreadEtc(_threadLoop, this, name, priority, stack,&mThread); }
上面的mCanCallJava將線程創建函數的邏輯分為兩個分支,雖傳入的參數都有_threadLoop,但調用的函數卻不同。先直接看mCanCallJava為true的這個分支
Thread.h::createThreadEtc()
inline bool createThreadEtc(thread_func_tentryFunction, void *userData, const char*threadName = "android:unnamed_thread", int32_tthreadPriority = PRIORITY_DEFAULT, size_tthreadStackSize = 0, thread_id_t*threadId = 0) { return androidCreateThreadEtc(entryFunction, userData, threadName, threadPriority, threadStackSize,threadId) ? true : false; }
它調用的是androidCreateThreadEtc函數
// gCreateThreadFn是函數指針,初始化時和mCanCallJava為false時使用的是同一個 //線程創建函數。 static android_create_thread_fn gCreateThreadFn= androidCreateRawThreadEtc; int androidCreateThreadEtc(android_thread_func_tentryFunction, void*userData,const char* threadName, int32_tthreadPriority,size_t threadStackSize, android_thread_id_t*threadId) { return gCreateThreadFn(entryFunction, userData, threadName, threadPriority,threadStackSize, threadId); }
androidCreateThreadEtc方法最終會調用CreateThreadFn方法,初始化時和mCanCallJava為false時使用的是同一個
線程創建函數,所以我們要看一下到底什么地方會修改這個mCanCallJava的值。答案就在AndroidRuntime調用startReg的地方,就有可能修改這個函數指針
AndroidRuntime.cpp
/*static*/ int AndroidRuntime::startReg(JNIEnv*env) { //這里會修改函數指針為javaCreateThreadEtc androidSetCreateThreadFunc((android_create_thread_fn)javaCreateThreadEtc); return 0; }
所以,如果mCanCallJava為true,則將調用javaCreateThreadEtc。
AndroidRuntime.cpp
int AndroidRuntime::javaCreateThreadEtc( android_thread_func_tentryFunction, void* userData, const char*threadName, int32_tthreadPriority, size_t threadStackSize, android_thread_id_t* threadId) { void**args = (void**) malloc(3 * sizeof(void*)); intresult; args[0] = (void*) entryFunction; args[1] = userData; args[2] = (void*) strdup(threadName); //調用的還是androidCreateRawThreadEtc,但線程函數卻換成了javaThreadShell。 result= androidCreateRawThreadEtc(AndroidRuntime::javaThreadShell, args, threadName, threadPriority,threadStackSize, threadId); return result; }
AndroidRuntime.cpp
http://androidxref.com/6.0.0_r1/xref/frameworks/base/core/jni/AndroidRuntime.cpp
int AndroidRuntime::javaThreadShell(void* args){ ...... intresult; //把這個線程attach到JNI環境中,這樣這個線程就可以調用JNI的函數了 if(javaAttachThread(name, &env) != JNI_OK) return -1; //調用實際的線程函數干活 result = (*(android_thread_func_t)start)(userData); //從JNI環境中detach出來。 javaDetachThread(); free(name); returnresult; }
到這里,終於明白了mCanCallJava為true的目的:
1.在調用你的線程函數之前會attach到 JNI環境中,這樣,你的線程函數就可以無憂無慮地使用JNI函數了。
2.線程函數退出后,它會從JNI環境中detach,釋放一些資源。
進程退出前,dalvik虛擬機會檢查是否有attach了,但是最后未detach的線程如果有,則會直接abort,這顯然是不好的。
_threadLoop
還記得上面的代碼
if(mCanCallJava) { res = createThreadEtc(_threadLoop,this, name, priority, stack,&mThread); } else{ res = androidCreateRawThreadEtc(_threadLoop, this, name, priority, stack,&mThread); }
盡管根據mCanCallJava不同會調用不同的函數,但是都是傳入了_threadLoop,所以我們有必要分析這個方法。
int Thread::_threadLoop(void* user) { Thread* const self = static_cast<Thread*>(user); sp<Thread> strong(self->mHoldSelf); wp<Thread> weak(strong); self->mHoldSelf.clear(); #if HAVE_ANDROID_OS self->mTid = gettid(); #endif boolfirst = true; do { bool result; if(first) { first = false; //self代表繼承Thread類的對象,第一次進來將調用readyToRun,看看是否准備好 self->mStatus = self->readyToRun(); result = (self->mStatus == NO_ERROR); if (result && !self->mExitPending) { result = self->threadLoop(); } }else { /* 調用子類實現的threadLoop函數,注意這段代碼運行在一個do-while循環中。 這表示即使我們的threadLoop返回了,線程也不一定會退出。 */ result = self->threadLoop(); } /* 線程退出的條件: 1)result 為false。這表明,如果子類在threadLoop中返回false,線程就可以 退出。這屬於主動退出的情況,是threadLoop自己不想繼續干活了,所以返回false。千萬別寫錯threadLoop的返回值。 2)mExitPending為true,這個變量可由Thread類的requestExit函數設置,這種 情況屬於被動退出,因為由外界強制設置了退出條件。 */ if(result == false || self->mExitPending) { self->mExitPending = true; self->mLock.lock(); self->mRunning = false; self->mThreadExitedCondition.broadcast(); self->mLock.unlock(); break; } strong.clear(); strong = weak.promote(); }while(strong != 0); return 0; }
_threadLoop運行在一個循環中,它的返回值可以決定是否退出線程。
常用同步類
互斥類——Mutex
Mutex是互斥類,用於多線程訪問同一個資源的時候,保證一次只能有一個線程能訪問該資源。例如想象你在飛機上如廁,這時衛生間的信息牌上顯示“有人”,你必須等里邊的人出來后才可進去。這就是互斥的含義。
Thread.h::Mutex的聲明和實現
inline Mutex::Mutex(int type, const char* name){ if(type == SHARED) { //type如果是SHARED,則表明這個Mutex支持跨進程的線程同步 //在Audio系統和Surface系統中會經常見到這種用法 pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); pthread_mutex_init(&mMutex, &attr); pthread_mutexattr_destroy(&attr); } else { pthread_mutex_init(&mMutex, NULL); } } inline Mutex::~Mutex() { pthread_mutex_destroy(&mMutex); } inline status_t Mutex::lock() { return-pthread_mutex_lock(&mMutex); } inline void Mutex::unlock() { pthread_mutex_unlock(&mMutex); } inline status_t Mutex::tryLock() { return-pthread_mutex_trylock(&mMutex); }
關於Mutex的使用,除了初始化外,最重要的是lock和unlock函數的使用,它們的用法如下:
要想獨占衛生間,必須先調用Mutex的lock函數。這樣,這個區域就被鎖住了。如果這塊區域之前已被別人鎖住,lock函數則會等待,直到可以進入這塊區域為止。系統保證一次只有一個線程能lock成功。
· 當你“方便”完畢,記得調用Mutex的unlock以釋放互斥區域。這樣,其他人的lock才可以成功返回。
· 另外,Mutex還提供了一個trylock函數,該函數只是嘗試去鎖住該區域,使用者需要根據trylock的返回值判斷是否成功鎖住了該區域。
AutoLock介紹
AutoLock類是定義在Mutex內部的一個類,Mutex的使用如下
· 顯示調用Mutex的lock。
· 在某個時候要記住調用該Mutex的unlock。以上這些操作都必須一一對應,否則會出現“死鎖”!充分利用了C++的構造和析構函數,可以達到不忘了釋放鎖的目的。
Thread.h Mutex::Autolock聲明和實現
classAutolock { public: //構造的時候調用lock inline Autolock(Mutex& mutex) : mLock(mutex) { mLock.lock(); } inline Autolock(Mutex* mutex) : mLock(*mutex) { mLock.lock(); } //析構的時候調用unlock inline ~Autolock() { mLock.unlock(); } private: Mutex& mLock; };
AutoLock的用法很簡單:
· 先定義一個Mutex,如 Mutex xlock;
· 在使用xlock的地方,定義一個AutoLock,如 AutoLock autoLock(xlock)。
由於C++對象的構造和析構函數都是自動被調用的,所以在AutoLock的生命周期內,xlock的lock和unlock也就自動被調用了,這樣就省去了重復書寫unlock的麻煩,而且lock和unlock的調用肯定是一一對應的,這樣就絕對不會出錯。
條件類——Condition
· 線程A做初始化工作,而其他線程比如線程B、C必須等到初始化工作完后才能工作,即線程B、C在等待一個條件,我們稱B、C為等待者。
· 當線程A完成初始化工作時,會觸發這個條件,那么等待者B、C就會被喚醒。觸發這個條件的A就是觸發者。
Thread.h::Condition的聲明和實現
class Condition { public: enum { PRIVATE = 0, SHARED = 1 }; Condition(); Condition(int type);//如果type是SHARED,表示支持跨進程的條件同步 ~Condition(); //線程B和C等待事件,wait這個名字是不是很形象呢? status_t wait(Mutex& mutex); //線程B和C的超時等待,B和C可以指定等待時間,當超過這個時間,條件卻還不滿足,則退出等待 status_t waitRelative(Mutex& mutex, nsecs_t reltime); //觸發者A用來通知條件已經滿足,但是B和C只有一個會被喚醒 voidsignal(); //觸發者A用來通知條件已經滿足,所有等待者都會被喚醒 voidbroadcast(); private: #if defined(HAVE_PTHREADS) pthread_cond_t mCond; #else void* mState; #endif }
聲明很簡單,定義也很簡單
inline Condition::Condition() { pthread_cond_init(&mCond, NULL); } inline Condition::Condition(int type) { if(type == SHARED) {//設置跨進程的同步支持 pthread_condattr_t attr; pthread_condattr_init(&attr); pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); pthread_cond_init(&mCond, &attr); pthread_condattr_destroy(&attr); } else{ pthread_cond_init(&mCond, NULL); } } inline Condition::~Condition() { pthread_cond_destroy(&mCond); } inline status_t Condition::wait(Mutex&mutex) { return-pthread_cond_wait(&mCond, &mutex.mMutex); } inline status_tCondition::waitRelative(Mutex& mutex, nsecs_t reltime) { #if defined(HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE) structtimespec ts; ts.tv_sec = reltime/1000000000; ts.tv_nsec = reltime%1000000000; return-pthread_cond_timedwait_relative_np(&mCond, &mutex.mMutex, &ts); ...... //有些系統沒有實現POSIX的相關函數,所以不同系統需要調用不同的函數 #endif } inline void Condition::signal() { pthread_cond_signal(&mCond); } inline void Condition::broadcast() { pthread_cond_broadcast(&mCond); }
可以看出,Condition的實現全是憑借調用了Raw API的pthread_cond_xxx函數。這里要重點說明的是,Condition類必須配合Mutex來使用。上面代碼中,不論是wait、waitRelative、signal還是broadcast的調用,都放在一個Mutex的lock和unlock范圍中,尤其是wait和waitRelative函數的調用,這是強制性的。
Condition類和Mutex類使用的例子,在Thread類的requestExitAndWait中就可以體現
Thread.cpp
status_t Thread::requestExitAndWait() { ...... requestExit();//設置退出變量mExitPending為true Mutex::Autolock_l(mLock);//使用Autolock,mLock被鎖住 while(mRunning == true) { /* 條件變量的等待,這里為什么要通過while循環來反復檢測mRunning? 因為某些時候即使條件類沒有被觸發,wait也會返回。 */ mThreadExitedCondition.wait(mLock); } mExitPending = false; //退出前,局部變量Mutex::Autolock _l的析構會被調用,unlock也就會被自動調用。 returnmStatus; }
Thread.cpp
int Thread::_threadLoop(void* user) { Thread* const self =static_cast<Thread*>(user); sp<Thread> strong(self->mHoldSelf); wp<Thread> weak(strong); self->mHoldSelf.clear(); do { ...... result= self->threadLoop();//調用子類的threadLoop函數 ...... //如果mExitPending為true,則退出 if(result == false || self->mExitPending) { self->mExitPending = true; //退出前觸發條件變量,喚醒等待者 self->mLock.lock();//lock鎖住 //mRunning的修改位於鎖的保護中。 self->mRunning = false; self->mThreadExitedCondition.broadcast(); self->mLock.unlock();//釋放鎖 break;//退出循環,此后該線程函數會退出 } ...... }while(strong != 0); return0; }
原子操作函數
所謂原子操作,就是該操作絕不會在執行完畢前被任何其他任務或事件打斷,也就說,原子操作是最小的執行單位
static int g_flag = 0; //全局變量g_flag static Mutex lock ;//全局的鎖 //線程1執行thread1 void thread1() { //g_flag遞減,每次操作前鎖住 lock.lock(); g_flag--; lock.unlock(); } //線程2中執行thread2函數 void thread2() { lock.lock(); g_flag++; //線程2對g_flag進行遞增操作,每次操作前要取得鎖 lock.unlock(); }
為什么需要Mutex來幫忙呢?因為g_flags++或者g_flags—操作都不是原子操作。從匯編指令的角度看,C/C++中的一條語句對應了數條匯編指令。以g_flags++操作為例,它生成的匯編指令可能就是以下三條:
· 從內存中取數據到寄存器。
· 對寄存器中的數據進行遞增操作,結果還在寄存器中。
· 寄存器的結果寫回內存。
這三條匯編指令,如果按正常的順序連續執行,是沒有問題的,但在多線程時就不能保證了。例如,線程1在執行第一條指令后,線程2由於調度的原因,搶先在線程1之前連續執行完了三條指令。這樣,線程1繼續執行指令時,它所使用的值就不是線程2更新后的值,而是之前的舊值。再對這個值進行操作便沒有意義了。
在一般情況下,處理這種問題可以使用Mutex來加鎖保護,但Mutex的使用比它所要保護的內容還復雜,例如,鎖的使用將導致從用戶態轉入內核態,有較大的浪費。那么,有沒有簡便些的辦法讓這些加、減等操作不被中斷呢?
Android提供了相關的原子操作函數。這里,有必要介紹一下各個函數的作用。
Atomic.h
注意該文件位置在system/core/include/cutils目錄中
//原子賦值操作,結果是*addr=value void android_atomic_write(int32_t value,volatile int32_t* addr); //下面所有函數的返回值都是操作前的舊值 //原子加1和原子減1 int32_t android_atomic_inc(volatile int32_t*addr); int32_t android_atomic_dec(volatile int32_t*addr); //原子加法操作,value為被加數 int32_t android_atomic_add(int32_t value,volatile int32_t* addr); //原子“與”和“或”操作 int32_t android_atomic_and(int32_t value,volatile int32_t* addr); int32_t android_atomic_or(int32_t value,volatile int32_t* addr); /* 條件交換的原子操作。只有在oldValue等於*addr時,才會把newValue賦值給*addr 這個函數的返回值須特別注意。返回值非零,表示沒有進行賦值操作。返回值為零,表示 進行了原子操作。 */ int android_atomic_cmpxchg(int32_t oldvalue,int32_t newvalue, volatile int32_t*addr);
