Dijkstra算法
Dijkstra算法算是貪心思想實現的,首先把起點到所有點的距離存下來找個最短的,然后松弛一次再找出最短的,所謂的松弛操作就是,遍歷一遍看通過剛剛找到的距離最短的點作為中轉站會不會更近,如果更近了就更新距離,這樣把所有的點找遍之后就存下了起點到其他所有點的最短距離。
問題引入:
指定一個點(源點)到其余各個頂點的最短路徑,也叫做“單源最短路徑”。例如求下圖中的1號頂點到2、3、4、5、6號頂點的最短路徑。
下面我們來模擬一下:
這就是Dijkstra算法的基本思路:
接下來是代碼:
已經把幾個過程都封裝成了基本模塊:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f
using namespace std;
int map[1005][1005];
int vis[1005],dis[1005];
int n,m;//n個點,m條邊
void Init ()
{
memset(map,Inf,sizeof(map));
for(int i=1;i<=n;i++)
{
map[i][i]=0;
}
}
void Getmap()
{
int u,v,w;
for(int t=1;t<=m;t++)
{
scanf("%d%d%d",&u,&v,&w);
if(map[u][v]>w)
{
map[u][v]=w;
map[v][u]=w;
}
}
}
void Dijkstra(int u)
{
memset(vis,0,sizeof(vis));
for(int t=1;t<=n;t++)
{
dis[t]=map[u][t];
}
vis[u]=1;
for(int t=1;t<n;t++)
{
int minn=Inf,temp;
for(int i=1;i<=n;i++)
{
if(!vis[i]&&dis[i]<minn)
{
minn=dis[i];
temp=i;
}
}
vis[temp]=1;
for(int i=1;i<=n;i++)
{
if(map[temp][i]+dis[temp]<dis[i])
{
dis[i]=map[temp][i]+dis[temp];
}
}
}
}
int main()
{
scanf("%d%d",&m,&n);
Init();
Getmap();
Dijkstra(n);
printf("%d\n",dis[1]);
return 0;
}