最近開發時要實現一個業務邏輯:
- 調用中國氣象數據網API接口獲取廣東省實時氣象數據
- 根據數據,基於廣東省地圖渲染等壓線圖
最終效果圖是這樣的:
- 首先是獲取實時氣壓數據,由於中國氣象數據網每次只能獲得30個站點的氣象數據,而廣東省共有86個氣象站點,所以分成3批獲取,存入數組。
獲取到的數據格式是[{Station_Id_C,Year,Mon,Day,Hour,PES}]
,然后遍歷氣象站點列表,把對應的經緯度(longitude、latitude)
存入數組中,得到了這樣的三元組數組(longitude、latitude、value)
,用pandas處理一下:
x = df['longitude'].values
y = df['latitude'].values
z = df[request.GET.get("c")].values
- 然后通過numpy庫中的 meshgrid 函數把x、y兩個一維數組矢量化為兩個二維數組
X , Y = np.meshgrid(x,y)
- 用zip函數取出所有點
points = [[a, b] for a, b in zip(x, y)]
- 使用scipy庫中的 griddata 函數插值數據集,便於形成N條等壓線
Z = griddata(points, z, (X, Y))
- 為了與前端采用的geojson作為地圖數據統一,選用Geopands庫作為地圖渲染庫,首先打開廣東省的geojson文件
df = gpd.read_file(os.path.dirname(__file__) + '\\gd.json')
,然后將地圖渲染到matplotlib的畫布上ax = df.plot(figsize=(10, 10), alpha=0.2, edgecolor='k')
- 利用 contour 函數將等壓線渲染到畫布上
C = ax.contour(X, Y, Z)
,再標注等壓線的數值plt.clabel(C, inline=True, fontsize=10)
- 去除x軸、y軸
plt.xticks(()) plt.yticks(())
,調用show函數查看圖像 - 實際業務中的代碼如下,為了用戶下載圖片浪費服務器資源,選擇將靜態圖片保存至服務器端:
def get_contour(request):
index_url = "http://api.data.cma.cn:8090/api?"
get_params = {
"dataFormat": "json",
"interfaceId": "getSurfEleByTimeRangeAndStaID",
"dataCode": "SURF_CHN_MUL_HOR",
"timeRange": "[" + datetime.strptime(request.GET.get('f'), "%Y-%m-%dT%H:%M").strftime(
"%Y%m%d%H%M%S") + "," + datetime.strptime(request.GET.get('g'), "%Y-%m-%dT%H:%M").strftime(
"%Y%m%d%H%M%S") + "]",
"staIDs": int(request.GET.get('e')),
"elements": 'Station_Id_C,Year,Mon,Day,Hour,' + request.GET.get("c")
}
session = requests.Session()
f = session.get(index_url + parse.urlencode(get_params))
s = json.loads(f.text)
l = s['DS'][len(s['DS']) - 1]
date = datetime(year=int(l['Year']), month=int(l['Mon']),
day=int(l['Day']), hour=int(l['Hour']))
s = list(DCmaStation.objects.all().values())
d = []
for i in range(int(len(s) / 30) + 1):
n = [j['id'] for j in s[i * 30: (i + 1) * 30]]
get_params = {
"dataFormat": "json",
"interfaceId": "getSurfEleByTimeRangeAndStaID",
"dataCode": "SURF_CHN_MUL_HOR",
"timeRange": "[" + date.strftime("%Y%m%d%H%M%S") + "," + date.strftime("%Y%m%d%H%M%S") + "]",
"staIDs": str(n),
"elements": 'Station_Id_C,Year,Mon,Day,Hour,' + request.GET.get("c")
}
f = session.get(index_url + parse.urlencode(get_params))
d.extend(json.loads(f.text)['DS'])
for i in d:
for j in s:
if int(i['Station_Id_C']) == int(j['id']):
i['longitude'] = j['longitude']
i['latitude'] = j['latitude']
break
df = pd.DataFrame(d)
x = df['longitude'].values
y = df['latitude'].values
z = df[request.GET.get("c")].values
def plot_contour(x, y, z, resolution=50, contour_method='linear'):
resolution = str(resolution) + 'j'
X, Y = np.mgrid[min(x):max(x):complex(resolution), min(y):max(y):complex(resolution)]
points = [[a, b] for a, b in zip(x, y)]
Z = griddata(points, z, (X, Y), method=contour_method)
return X, Y, Z
X, Y, Z = plot_contour(x, y, z, resolution=50, contour_method='linear')
locale.setlocale(locale.LC_CTYPE, 'chinese')
plt.rcParams['font.sans-serif'] = ['SimHei']
df = gpd.read_file(os.path.dirname(__file__) + '\\gd.json')
ax = df.plot(figsize=(10, 10), alpha=0.2, edgecolor='k')
C = ax.contour(X, Y, Z)
plt.clabel(C, inline=True, fontsize=10)
plt.xticks(())
plt.yticks(())
plt.title(
"廣東省" + date.strftime("%Y年%m月%d日%H時") + "等" + DCmaDict.objects.filter(key=request.GET.get('c')).first().value+"圖")
filename = datetime.now().strftime("%Y%m%d%H%M%S") + ".png"
plt.savefig(os.path.dirname(__file__) + '\\static\\img\\' + filename, bbox_inches='tight')
return HttpResponse(filename)