題目如下:
Alice and Bob take turns playing a game, with Alice starting first.
Initially, there is a number
N
on the chalkboard. On each player's turn, that player makes a move consisting of:
- Choosing any
x
with0 < x < N
andN % x == 0
.- Replacing the number
N
on the chalkboard withN - x
.Also, if a player cannot make a move, they lose the game.
Return
True
if and only if Alice wins the game, assuming both players play optimally.
Example 1:
Input: 2 Output: true Explanation: Alice chooses 1, and Bob has no more moves.
Example 2:
Input: 3 Output: false Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves.
Note:
1 <= N <= 1000
解題思路:假設當前操作是Bob選擇,我們可以定義一個集合dic = {},里面存儲的元素Bob必輸的局面。例如當前N=1,那么Bob無法做任何移動,是必輸的場面,記dic[1] = 1。那么對於Alice來說,在輪到自己操作的時候,只有選擇一個x,使得N-x在這個必輸的集合dic里面,這樣就是必勝的策略。因此對於任意一個N,只要存在 N%x == 0 並且N-x in dic,那么這個N對於Alice來說就是必勝的。只要計算一遍1~1000所有的值,把必輸的N存入dic中,最后判斷Input是否在dic中即可得到結果。
代碼如下:
class Solution(object): dic = {1:1} def init(self): for i in range(2,1000+1): flag = False for j in range(1,i): if i % j == 0 and i - j in self.dic: flag = True break if flag == False: self.dic[i] = 1 def divisorGame(self, N): """ :type N: int :rtype: bool """ if len(self.dic) == 1: self.init() return N not in self.dic