題面
前置芝士
優化后的\(MTT\)(四次\(FFT\))
題解
這里有多點求值的做法然而被\(shadowice\)巨巨吊起來打了一頓,所以來學一下倍增
成功同時拿到本題最優解和最劣解……
\(Min_{25}\)牛逼!(據說這是原文然而我看不懂就是了)
真的快的不要不要的……
和多點求值一樣,我們還是設\(s=\sqrt{n}\),並設多項式
求出\(g_s(0),g_s(s),g_s(2s),..,g_s((s-1)s)\)的值,最后再乘上\(\prod_{i=s^2+1}^ni\)即可
具體來說我們現在要完成兩個操作
已知
求
通過這個操作我們可以把\(d\)乘\(2\)
已知
求
通過這個操作我們可以把\(d\)加\(1\)
然后就可以用一個類似快速冪的迭代來求出\(g_s\)了
把\(d\)加\(1\)
這個簡單一點先說這個好了
對於\(g_{d+1}((d+1)s)\),直接暴力計算就行了
對於剩下的項,也可以直接暴力計算,因為有
那么一次的復雜度就是\(O(s)\)的
把\(d\)乘\(2\)
這種情況就比較辣手了
具體來說,我們已知
需要求
首先有
我們先考慮一下,已知
如何求出
我們可以設\(h(i)=g_d(is)\),那么問題可以轉化為已知
求
另一個問題就是已知
求
也可以轉化為已知
求
總和起來,問題就是已知
我們需要求得
根據拉格朗日差值公式,有
后面明顯是個卷積的形式,前面是一段連續區間的乘積,可以用雙指針維護
然而萬一這里\(m+k-i=0\)怎么辦?
因為 \(h(x)\) 本質上代表了一段連續數字的乘積,而根據我們算法的原理, \(h(m+k)\) 和 \(h(i)\) 一定代表了兩段不同的數字,所以分母不可能為0
那么我們就可以把\(d\)乘\(2\)了
然而這里有兩個細節問題
第一,如果直接求逆元的話是\(O(d\log p)\)的,不過其實有\(O(d)\)求\(n\)個數逆元的方法,感興趣的可以自己去看這里
第二,雖然\(m\)很小,但是\(m+k\)很大,我們不能直接暴力卷積。注意到后面那個卷積柿子中當\(i>n\)時可以默認\(h(i)=0\),所以有用的項其實只有\(m=0,{1\over m+k-d}\),以及\(m=d,{1\over m+k}\)之間的數,也就是說后面有用的項不超過\(O(d)\)個,所以我們需要把多項式平移一下再來卷積
然后沒有然后了
不過可以用威爾遜定理優化一下常數就是了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=(1<<17)+5;int P;
inline int add(R int x,R int y){return 0ll+x+y>=P?0ll+x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
const double Pi=acos(-1.0);
struct cp{
double x,y;
inline cp(){}
inline cp(R double xx,R double yy):x(xx),y(yy){}
inline cp operator +(const cp &b)const{return cp(x+b.x,y+b.y);}
inline cp operator -(const cp &b)const{return cp(x-b.x,y-b.y);}
inline cp operator *(const cp &b)const{return cp(x*b.x-y*b.y,x*b.y+y*b.x);}
inline cp operator *(const double &b)const{return cp(x*b,y*b);}
inline cp operator ~()const{return cp(x,-y);}
}w[2][N];
int r[21][N],ifac[N],lg[N],inv[N];double iv[21];
void Pre(){
iv[0]=1;
fp(d,1,17){
fp(i,0,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
lg[1<<d]=d,iv[d]=iv[d-1]*0.5;
}
inv[0]=inv[1]=ifac[0]=ifac[1]=1;
fp(i,2,131072)inv[i]=mul(P-P/i,inv[P%i]),ifac[i]=mul(ifac[i-1],inv[i]);
for(R int i=1,d=0;i<131072;i<<=1,++d)fp(k,0,i-1)
w[1][i+k]=cp(cos(Pi*k*iv[d]),sin(Pi*k*iv[d])),
w[0][i+k]=cp(cos(Pi*k*iv[d]),-sin(Pi*k*iv[d]));
}
int lim,d;
void FFT(cp *A,int ty){
fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
cp t;
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0;j<lim;j+=(mid<<1))
fp(k,0,mid-1)
A[j+k+mid]=A[j+k]-(t=w[ty][mid+k]*A[j+k+mid]),
A[j+k]=A[j+k]+t;
if(!ty)fp(i,0,lim-1)A[i]=A[i]*iv[d];
}
void MTT(int *a,int *b,int len,int *c){
static cp f[N],g[N],p[N],q[N];
lim=len,d=lg[lim];
fp(i,0,len-1)f[i]=cp(a[i]>>16,a[i]&65535),g[i]=cp(b[i]>>16,b[i]&65535);
fp(i,len,lim-1)f[i]=g[i]=cp(0,0);
FFT(f,1),FFT(g,1);
fp(i,0,lim-1){
cp t,f0,f1,g0,g1;
t=~f[i?lim-i:0],f0=(f[i]-t)*cp(0,-0.5),f1=(f[i]+t)*0.5;
t=~g[i?lim-i:0],g0=(g[i]-t)*cp(0,-0.5),g1=(g[i]+t)*0.5;
p[i]=f1*g1,q[i]=f1*g0+f0*g1+f0*g0*cp(0,1);
}
FFT(p,0),FFT(q,0);
fp(i,0,lim-1)c[i]=((((ll)(p[i].x+0.5)%P<<16)%P<<16)+((ll)(q[i].x+0.5)<<16)+((ll)(q[i].y+0.5)))%P;
}
void calc(int *a,int *b,int n,int k){
static int f[N],g[N],h[N],sum[N],isum[N];
int len=1;while(len<=n+n)len<<=1;
fp(i,0,n)f[i]=mul(a[i],mul(ifac[i],ifac[n-i]));
for(R int i=n-1;i>=0;i-=2)f[i]=P-f[i];
int t=dec(k,n);
fp(i,0,n+n)g[i]=add(i,t);
sum[0]=g[0];fp(i,1,n+n)sum[i]=mul(sum[i-1],g[i]);
isum[n+n]=ksm(sum[n+n],P-2);
fd(i,n+n,1)isum[i-1]=mul(isum[i],g[i]);
fp(i,1,n+n)g[i]=mul(isum[i],sum[i-1]);g[0]=isum[0];
fp(i,n+1,len-1)f[i]=0;fp(i,n+n+1,len-1)g[i]=0;
MTT(f,g,len,h);
int res=1,p1=k-n,p2=k;
fp(i,p1,p2)res=1ll*res*i%P;
res=dec(res,0);
fp(i,0,n)g[i]=(0ll+P+p1+i)%P;
sum[0]=g[0];fp(i,1,n)sum[i]=mul(sum[i-1],g[i]);
isum[n]=ksm(sum[n],P-2);
fd(i,n,1)isum[i-1]=mul(isum[i],g[i]);
fp(i,1,n)g[i]=mul(isum[i],sum[i-1]);g[0]=isum[0];
for(R int i=0;i<=n;p2=add(p2,1),++i)
b[i]=mul(h[i+n],res),res=mul(res,mul(g[i],p2+1));
}
int solve(int bl){
static int a[N],b[N],c[N];
int s=0;for(int p=bl;p;p>>=1)++s;a[0]=1,--s;
int qwq=ksm(bl,P-2);
for(int p=0;s>=0;--s){
if(p){
calc(a,b,p,p+1);
fp(i,0,p)a[p+i+1]=b[i];a[p<<1|1]=0;
calc(a,b,p<<1,mul(p,qwq));
p<<=1;fp(i,0,p)a[i]=mul(a[i],b[i]);
}
if(bl>>s&1){
fp(i,0,p)a[i]=mul(a[i],(1ll*bl*i+p+1)%P);
p|=1,a[p]=1;
fp(i,1,p)a[p]=mul(a[p],(1ll*bl*p+i)%P);
}
}
int res=1;
fp(i,0,bl-1)res=mul(res,a[i]);
return res;
}
int GetFac(int n){
int s=sqrt(n),res=solve(s);
fp(i,s*s+1,n)res=mul(res,i);
return res;
}
int Fac(int n){
if(n>P-1-n){
int res=ksm(GetFac(P-1-n),P-2);
return (P-1-n)&1?res:P-res;
}
return GetFac(n);
}
int n;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&P),Pre();
printf("%d\n",Fac(n));
return 0;
}