下面是一些USB攝像頭的驅動(大多數攝像頭都支持uvc標准):
1 使用軟件庫里的uvc-camera功能包
1.1 檢查攝像頭
lsusb
-------------------------------------
顯示如下:
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 007: ID 046d:082b Logitech, Inc. Webcam C170
Bus 001 Device 006: ID 0461:4e2a Primax Electronics, Ltd
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
1.2 安裝uvc camera功能包
sudo apt-get install ros-indigo-uvc-camera
1.3 安裝image相關功能包
sudo apt-get install ros-kinetic-image-*
sudo apt-get install ros-kinetic-rqt-image-view
1.4 運行uvc_camera節點
rosrun uvc_camera uvc_camera_node
1.5 查看圖像信息
(1)使用image_view節點查看圖像
rosrun image_view image_view image:=/image_raw
-------------------------------------
說明:最后面的附加選項“image:=/image_raw”是把話題列表中的話題以圖像形式查看的選項。
(2)用rqt_image_view節點檢查
rqt_image_view image:=/image_raw
(3)使用rviz查看
rviz
增加image,然后將[Image] → [Image Topic]的值更改為“/image_raw”。
使用apt-get安裝的軟件包好像只有執行程序,沒有launch文件和節點源文件等等,所以采用了自建uvc-camera軟件包更該參數。
2 使用usb_cam軟件包
2.1 安裝usb_cam軟件包
sudo apt-get install ros-kinetic-usb-cam
2.2 啟用launch文件
roslaunch usb_cam usb_cam-test.launch
-------------------------------------
顯示如下:
launch文件的目錄為:/opt/ros/kinetic/share/usb_cam
,可在該目錄下找到luanch文件並修改參數。
3 使用opencv驅動USB攝像頭
首先創建一個工作空間:
$ mkdir -p ~/ros_ws/src
$ cd ~/ros_ws/
$ catkin_make
$ source devel/setup.bash
再建立一個功能包:
$ cd ~/ros_ws/src
$ catkin_create_pkg learning_image_transport roscpp std_msgs cv_bridge image_transport sensor_msgs
然后在功能包learning_image_transport下的src目錄中建立兩個cpp文件:
$ cd ~/ros_ws/src/learning_image_transport/src/
$ gedit my_publisher.cpp
然后在功能包learning_image_transport下的src目錄中建立兩個cpp文件:
$ cd ~/ros_ws/src/learning_image_transport/src/
$ gedit my_publisher.cpp
將下列代碼復制進去:
#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <opencv2/highgui/highgui.hpp>
#include <cv_bridge/cv_bridge.h>
#include <sstream> // for converting the command line parameter to integer
int main(int argc, char** argv)
{
// Check if video source has been passed as a parameter
if(argv[1] == NULL)
{
ROS_INFO("argv[1]=NULL\n");
return 1;
}
ros::init(argc, argv, "image_publisher");
ros::NodeHandle nh;
image_transport::ImageTransport it(nh);
image_transport::Publisher pub = it.advertise("camera/image", 1);
// Convert the passed as command line parameter index for the video device to an integer
std::istringstream video_sourceCmd(argv[1]);
int video_source;
// Check if it is indeed a number
if(!(video_sourceCmd >> video_source))
{
ROS_INFO("video_sourceCmd is %d\n",video_source);
return 1;
}
cv::VideoCapture cap(video_source);
// Check if video device can be opened with the given index
if(!cap.isOpened())
{
ROS_INFO("can not opencv video device\n");
return 1;
}
cv::Mat frame;
sensor_msgs::ImagePtr msg;
ros::Rate loop_rate(5);
while (nh.ok())
{
cap >> frame;
// Check if grabbed frame is actually full with some content
if(!frame.empty())
{
msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", frame).toImageMsg();
pub.publish(msg);
//cv::Wait(1);
}
}
ros::spinOnce();
loop_rate.sleep();
}
保存以后,繼續創建my_subscriber.cpp:
$ gedit my_subscriber.cpp
復制下列代碼:
#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <opencv2/highgui/highgui.hpp>
#include <cv_bridge/cv_bridge.h>
void imageCallback(const sensor_msgs::ImageConstPtr& msg)
{
try
{
cv::imshow("view", cv_bridge::toCvShare(msg, "bgr8")->image);
// cv::waitKey(30);
}
catch (cv_bridge::Exception& e)
{
ROS_ERROR("Could not convert from '%s' to 'bgr8'.", msg->encoding.c_str());
}
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "image_listener");
ros::NodeHandle nh;
cv::namedWindow("view");
cv::startWindowThread();
image_transport::ImageTransport it(nh);
image_transport::Subscriber sub = it.subscribe("camera/image", 1,imageCallback);
ros::spin();
cv::destroyWindow("view");
}
接下來要把涉及到的各種包和opencv在CMakeList中聲明一下,回到程序包目錄下。
$ cd ~/ros_ws/src/learning_image_transport/
$ gedit CMakeLists.txt
添加以下語句:
find_package(OpenCV REQUIRED)
# add the publisher example
add_executable(my_publisher src/my_publisher.cpp)
target_link_libraries(my_publisher ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})
# add the subscriber example
add_executable(my_subscriber src/my_subscriber.cpp)
target_link_libraries(my_subscriber ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})
將這個包進行編譯:
$ cd ~/ros_ws/
$ catkin_make
接下來開始運行程序,首先啟動ROS。
$ roscore
運行my_publisher節點.(如果運行不起來,需要先source devel/setup.bash)。
$ rosrun learning_image_transport my_publisher 0
這時候會看到我們的攝像頭燈已經亮起來了,0代表默認攝像頭,如果有多個攝像頭,則第二個是1,依次類推。
接下來運行my_subscriber節點來接收圖像。
$ rosrun learning_image_transport my_subscriber
這時候如果沒有錯誤的話就會彈出圖像窗口,如下所示:
參考:
ROS學習筆記(一):在ROS中使用USB網絡攝像頭傳輸圖像