Guava RateLimiter提供了令牌桶算法實現:平滑突發限流(SmoothBursty)和平滑預熱限流(SmoothWarmingUp)實現。
SmoothBursty:令牌生成速度恆定
@Test public void testAcquire() { // acquire(i); 獲取令牌,返回阻塞的時間,支持預消費. RateLimiter limiter = RateLimiter.create(1); for (int i = 1; i < 10; i++) { double waitTime = limiter.acquire(); System.out.println("cutTime=" + longToDate(System.currentTimeMillis()) + " acq:" + i + " waitTime:" + waitTime); } } public static String longToDate(long lo){ Date date = new Date(lo); SimpleDateFormat sd = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); return sd.format(date); }
輸出結果:
cutTime=2019-03-29 09:31:42 acq:1 waitTime:0.0
cutTime=2019-03-29 09:31:43 acq:2 waitTime:0.989135
cutTime=2019-03-29 09:31:44 acq:3 waitTime:0.998023
cutTime=2019-03-29 09:31:45 acq:4 waitTime:0.999573
cutTime=2019-03-29 09:31:46 acq:5 waitTime:0.999359
cutTime=2019-03-29 09:31:47 acq:6 waitTime:0.999566
cutTime=2019-03-29 09:31:48 acq:7 waitTime:0.998763
cutTime=2019-03-29 09:31:49 acq:8 waitTime:0.999163
cutTime=2019-03-29 09:31:50 acq:9 waitTime:1.000036
說明:每秒1個令牌生成一個令牌,從輸出可看出很平滑,這種實現將突發請求速率平均成固定請求速率。
下面demo是突發請求:
@Test public void testAcquire2() { // 請求突發 RateLimiter limiter = RateLimiter.create(5); for (int i = 1; i < 5; i++) { double waitTime = 0; if(i == 2){ waitTime = limiter.acquire(10); }else{ waitTime = limiter.acquire(1); } System.out.println("cutTime=" + longToDate(System.currentTimeMillis()) + " acq:" + i + " waitTime:" + waitTime); } }
輸出:
cutTime=2019-03-29 09:53:55 acq:1 waitTime:0.0
cutTime=2019-03-29 09:53:56 acq:2 waitTime:0.188901
cutTime=2019-03-29 09:53:58 acq:3 waitTime:1.99789
cutTime=2019-03-29 09:53:58 acq:4 waitTime:0.198832
說明:
i=1,消費i個令牌,此時還剩4個令牌;
i=2,突發10個請求,令牌桶算法也允許了這種突發(允許消費未來的令牌);
i=3,上次請求消費了,所以需要等待2s;
下面看源碼:
簡單介紹下:Stopwatch
public final class Stopwatch { private final Ticker ticker;//計時器,用於獲取當前時間 private boolean isRunning;//計時器是否運行中的狀態標記 private long elapsedNanos;//用於標記從計時器開啟到調用統計的方法時過去的時間 private long startTick;//計時器開啟的時刻時間 private long elapsedNanos() { return this.isRunning ? this.ticker.read() - this.startTick + this.elapsedNanos : this.elapsedNanos; } public long elapsed(TimeUnit desiredUnit) { return desiredUnit.convert(this.elapsedNanos(), TimeUnit.NANOSECONDS); } }
TimeUnit:
MILLISECONDS { public long toNanos(long d) { return x(d, C2/C0, MAX/(C2/C0)); } public long toMicros(long d) { return x(d, C2/C1, MAX/(C2/C1)); } public long toMillis(long d) { return d; } public long toSeconds(long d) { return d/(C3/C2); } public long toMinutes(long d) { return d/(C4/C2); } public long toHours(long d) { return d/(C5/C2); } public long toDays(long d) { return d/(C6/C2); } public long convert(long d, TimeUnit u) { return u.toMillis(d); } int excessNanos(long d, long m) { return 0; } }, MICROSECONDS { public long toNanos(long d) { return x(d, C1/C0, MAX/(C1/C0)); } public long toMicros(long d) { return d; } public long toMillis(long d) { return d/(C2/C1); } public long toSeconds(long d) { return d/(C3/C1); } public long toMinutes(long d) { return d/(C4/C1); } public long toHours(long d) { return d/(C5/C1); } public long toDays(long d) { return d/(C6/C1); } public long convert(long d, TimeUnit u) { return u.toMicros(d); } int excessNanos(long d, long m) { return (int)((d*C1) - (m*C2)); } }, NANOSECONDS { public long toNanos(long d) { return d; } public long toMicros(long d) { return d/(C1/C0); } public long toMillis(long d) { return d/(C2/C0); } public long toSeconds(long d) { return d/(C3/C0); } public long toMinutes(long d) { return d/(C4/C0); } public long toHours(long d) { return d/(C5/C0); } public long toDays(long d) { return d/(C6/C0); } public long convert(long d, TimeUnit u) { return u.toNanos(d); } int excessNanos(long d, long m) { return (int)(d - (m*C2)); } },
其中:
static final long C0 = 1L; static final long C1 = C0 * 1000L; static final long C2 = C1 * 1000L; static final long C3 = C2 * 1000L; static final long C4 = C3 * 60L; static final long C5 = C4 * 60L; static final long C6 = C5 * 24L;
@Test public void stopwatch1() { Stopwatch stopwatch = Stopwatch.createStarted(); doSomething(); stopwatch.stop(); // optional long millis = stopwatch.elapsed(MILLISECONDS); System.out.println("time: " + stopwatch); } @Test public void stopwatch2() { Stopwatch stopwatch = Stopwatch.createStarted(); //doSomething(); stopwatch.stop(); long millis = stopwatch.elapsed(MILLISECONDS); System.out.println("time: " + stopwatch); stopwatch.reset().start(); //doSomething(); stopwatch.stop(); millis = stopwatch.elapsed(MILLISECONDS); System.out.println("time: " + stopwatch); } public static void doSomething(){ try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } }
stopwatch1結果:
time: 100.8 ms
執行過程:
StopWatch.createStarted()
創建並啟動一個stopwatch實例,調用stopwatch.stop()停止計時,此時會更新stopwatch的elapsedNanos時間,為stopwatch開始啟動到結束計時的時間,再次調用stopwatch.elapsed(),獲取stopwatch在start-stop時間段,時間流逝的長度。
RateLimiter.class
public static RateLimiter create(double permitsPerSecond) { return create(permitsPerSecond, RateLimiter.SleepingStopwatch.createFromSystemTimer());//Stopwatch類稍后 } @VisibleForTesting static RateLimiter create(double permitsPerSecond, RateLimiter.SleepingStopwatch stopwatch) { RateLimiter rateLimiter = new SmoothBursty(stopwatch, 1.0D); rateLimiter.setRate(permitsPerSecond); return rateLimiter; } public final void setRate(double permitsPerSecond) { Preconditions.checkArgument(permitsPerSecond > 0.0D && !Double.isNaN(permitsPerSecond), "rate must be positive"); synchronized(this.mutex()) { this.doSetRate(permitsPerSecond, this.stopwatch.readMicros()); } } abstract void doSetRate(double var1, long var3);
說明:this.stopwatch.readMicros());源碼最終調用的是
NANOSECONDS {
public long toNanos(long d) { return d; }
public long toMicros(long d) { return d/(C1/C0); } //return (stopwatch中的elapsedNanos,表示時間差)/(1L * 1000L/1L)
}
SmoothRateLimiter
final void doSetRate(double permitsPerSecond, long nowMicros) { this.resync(nowMicros); double stableIntervalMicros = (double)TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond; this.stableIntervalMicros = stableIntervalMicros; this.doSetRate(permitsPerSecond, stableIntervalMicros); } abstract void doSetRate(double var1, double var3); void resync(long nowMicros) { if (nowMicros > this.nextFreeTicketMicros) { //相當於(double)(nowMicros - this.nextFreeTicketMicros) * (permitsPerSecond double)TimeUnit.SECONDS.toMicros(1L)) //令牌生成速率:xx/單位時間 double newPermits = (double)(nowMicros - this.nextFreeTicketMicros) / this.coolDownIntervalMicros(); this.storedPermits = Math.min(this.maxPermits, this.storedPermits + newPermits); this.nextFreeTicketMicros = nowMicros; } }
說明:
nowMicros:表示用於標記從計時器開啟到調用統計的方法時過去的時間
coolDownIntervalMicros:添加令牌時間間隔
stableIntervalMicros:添加令牌時間間隔 = (double)TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;(1秒/每秒的令牌數)
newPermits:時間段內新生令牌數
storedPermits:當前令牌數
nextFreeTicketMicros:
下一次請求可以獲取令牌的起始時間,由於RateLimiter允許預消費,上次請求預消費令牌后,下次請求需要等待相應的時間到nextFreeTicketMicros時刻才可以獲取令牌
SmoothBursty
static final class SmoothBursty extends SmoothRateLimiter { final double maxBurstSeconds; SmoothBursty(SleepingStopwatch stopwatch, double maxBurstSeconds) { super(stopwatch, null); this.maxBurstSeconds = maxBurstSeconds;//在RateLimiter未使用時,最多存儲幾秒的令牌 } void doSetRate(double permitsPerSecond, double stableIntervalMicros) { double oldMaxPermits = this.maxPermits; this.maxPermits = this.maxBurstSeconds * permitsPerSecond; if (oldMaxPermits == 1.0D / 0.0) { //相當於oldMaxPermits ==Double.POSITIVE_INFINITY ,Double.POSITIVE_INFINITY 表示無窮大 this.storedPermits = this.maxPermits; } else { this.storedPermits = oldMaxPermits == 0.0D ? 0.0D : this.storedPermits * this.maxPermits / oldMaxPermits; } } long storedPermitsToWaitTime(double storedPermits, double permitsToTake) { return 0L; } double coolDownIntervalMicros() { return this.stableIntervalMicros; } }
參數說明:
maxBurstSeconds:在RateLimiter未使用時,最多存儲幾秒的令牌
permitsPerSecond: 速率=令牌數/每秒
maxPermits :最大存儲令牌數 = maxBurstSeconds * permitsPerSecond
storedPermits: 當前存儲令牌數
RateLimiter幾個常用接口分析
1、acquire() 函數主要用於獲取permits個令牌,並計算需要等待多長時間,進而掛起等待,並將該值返回
RateLimiter.calss
@CanIgnoreReturnValue public double acquire() { return acquire(1); } /** * 獲取令牌,返回阻塞的時間 **/ @CanIgnoreReturnValue public double acquire(int permits) { long microsToWait = reserve(permits); //獲取等待時間后,阻塞線程 stopwatch.sleepMicrosUninterruptibly(microsToWait); return 1.0 * microsToWait / SECONDS.toMicros(1L); } final long reserve(int permits) { checkPermits(permits); synchronized (mutex()) { return reserveAndGetWaitLength(permits, stopwatch.readMicros()); } } final long reserveAndGetWaitLength(int permits, long nowMicros) { long momentAvailable = this.reserveEarliestAvailable(permits, nowMicros); return Math.max(momentAvailable - nowMicros, 0L); } abstract long reserveEarliestAvailable(int var1, long var2);
SmoothRateLimiter.class
final long reserveEarliestAvailable(int requiredPermits, long nowMicros) { this.resync(nowMicros); long returnValue = this.nextFreeTicketMicros;//resync()方法后,如果nowMicros > this.nextFreeTicketMicros,等於nowMicros double storedPermitsToSpend = Math.min((double)requiredPermits, this.storedPermits); //freshPermits從令牌桶中獲取令牌后還需要的令牌數量 double freshPermits = (double)requiredPermits - storedPermitsToSpend; //平滑這里this.storedPermitsToWaitTime()直接返回0L + 還需要令牌數量/速率(需要的時間) long waitMicros = this.storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend) + (long)(freshPermits * this.stableIntervalMicros); //如果超前消費,將導致下次請求等待時間=LongMath.saturatedAdd(this.nextFreeTicketMicros, waitMicros); this.nextFreeTicketMicros = LongMath.saturatedAdd(this.nextFreeTicketMicros, waitMicros); this.storedPermits -= storedPermitsToSpend; return returnValue; }
2、tryAcquire()
函數可以嘗試在timeout時間內獲取令牌,如果可以則掛起等待相應時間並返回true,否則立即返回false
public boolean tryAcquire(int permits, long timeout, TimeUnit unit) { long timeoutMicros = Math.max(unit.toMicros(timeout), 0L);//超時時間 checkPermits(permits); long microsToWait; synchronized(this.mutex()) { long nowMicros = this.stopwatch.readMicros(); if (!this.canAcquire(nowMicros, timeoutMicros)) { return false; } //獲取需要阻塞時間 microsToWait = this.reserveAndGetWaitLength(permits, nowMicros); } this.stopwatch.sleepMicrosUninterruptibly(microsToWait); return true; } private boolean canAcquire(long nowMicros, long timeoutMicros) { //下一次請求可以獲取令牌的起始時間 return this.queryEarliestAvailable(nowMicros) - timeoutMicros <= nowMicros; }
canAcquire
用於判斷timeout時間內是否可以獲取令牌,通過判斷當前時間+超時時間是否大於nextFreeTicketMicros 來決定是否能夠拿到足夠的令牌數,如果可以獲取到,則過程同acquire,線程sleep等待,如果通過
canAcquire
在此超時時間內不能回去到令牌,則可以快速返回,不需要等待timeout后才知道能否獲取到令牌。
SmoothWarmingUp:令牌生成速度緩慢提升直到維持在一個穩定值
SmoothWarmingUp創建方式:RateLimiter.create(doublepermitsPerSecond, long warmupPeriod, TimeUnit unit)
permitsPerSecond表示每秒新增的令牌數,warmupPeriod表示在從冷啟動速率過渡到平均速率的時間間隔。
@Test public void acquire1() { RateLimiter limiter = RateLimiter.create(5, 1000, TimeUnit.MILLISECONDS); for (int i = 1; i < 6; i++) { System.out.println(limiter.acquire()); } try { Thread.sleep(1000L); } catch (InterruptedException e) { e.printStackTrace(); } for (int i = 1; i < 6; i++) { System.out.println(limiter.acquire()); } }
結果:
0.0
0.518741
0.357811
0.219877
0.199584
0.0
0.361189
0.220761
0.19938
0.199856
速率是梯形上升速率的,也就是說冷啟動時會以一個比較大的速率慢慢到平均速率;然后趨於平均速率(梯形下降到平均速率)。可以通過調節warmupPeriod參數實現一開始就是平滑固定速率。
參考:
https://www.cnblogs.com/xuwc/p/9123078.html
https://www.cnblogs.com/xuwc/p/9123078.html