破解正弦型函數參數的取值范圍


前言

涉及到\(y=Asin(\omega x+\phi)+k\)型中的參數\(\omega\)\(\phi\)的取值范圍或者其具體值時,常常需要做出其函數圖像來求解。

解析式含參ω

例1 若函數\(y=2\sin\omega x+1(\omega>0)\)在區間\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上是增函數,求\(\omega\)的取值范圍。

法1:用傳統方法求得\(f(x)\)的單增區間,令\(2k\pi-\cfrac{\pi}{2}\leq \omega x\leq 2k\pi-\cfrac{\pi}{2}(k\in Z)\)

解得\(\cfrac{2k\pi}{\omega}-\cfrac{\pi}{2\omega} \leq x \leq \cfrac{2k\pi}{\omega}+\cfrac{\pi}{2\omega}(k\in Z)\)

\(f(x)\)的單增區間是\(\left[\cfrac{2k\pi}{\omega}-\cfrac{\pi}{2\omega},\cfrac{2k\pi}{\omega}+\cfrac{\pi}{2\omega}\right](k\in Z)\)

\(k=0\),得到距離原點左右兩側最近的單調遞增區間是\(\left[-\cfrac{\pi}{2\omega},\cfrac{\pi}{2\omega}\right]\)

又由於\(f(x)\) 在區間\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上單調遞增,即 \(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}]\subseteq [-\cfrac{\pi}{2\omega},\cfrac{\pi}{2\omega}\right]\)

這樣就轉化為不等式組,即\(\begin{cases} -\cfrac{\pi}{2}\ge -\cfrac{\pi}{2\omega}\\ \cfrac{2\pi}{3}\leq \cfrac{\pi}{2\omega} \end{cases}\)

所以\(\omega\leq \cfrac{3}{4}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)

法2:\(\because \omega>0,x\in \left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right] \therefore \omega x \in \left[-\cfrac{\pi\omega}{2},\cfrac{2\pi\omega}{3}\right]\)

又模板函數\(y=sinx\)在原點左右的單調遞增區間是\([-\cfrac{\pi}{2},\cfrac{\pi}{2}]\),將\(\omega x\)視為一個整體,

\(f(x)\)\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上單調遞增,故\(\left[-\cfrac{\pi\omega}{2},\cfrac{2\pi\omega}{3}\right]\subseteq \left[-\cfrac{\pi}{2},\cfrac{\pi}{2}\right]\)

\(\therefore \begin{cases} -\cfrac{\pi\omega}{2}\ge -\cfrac{\pi}{2} \\ \cfrac{2\pi\omega}{3}\leq \cfrac{\pi}{2} \end{cases}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)

法3:\(\because f(x)\) 在區間\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)單調遞增,

故原點到\(-\cfrac{\pi}{2},\cfrac{2\pi}{3}\) 的距離不超過\(\cfrac{T}{4}\)\(\therefore \begin{cases} -\cfrac{\pi}{2} \leq \cfrac{T}{4} \\ \cfrac{2\pi}{3} \leq \cfrac{T}{4} \end{cases}\)

\(T \ge \cfrac{8\pi}{3}\),即\(T=\cfrac{2\pi}{\omega} \ge \cfrac{8\pi}{3}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)

例1 【2020人大附中高一試題第16題】函數\(f(x)=2\sin(\omega x+\phi)(\omega>0)\),滿足\(f(\cfrac{\pi}{4})=2\)\(f(\pi)=0\),且\(f(x)\)在區間\((\cfrac{\pi}{4},\cfrac{\pi}{3})\)上單調,則\(\omega\)的值有___________個;

法1:由於\(f(\cfrac{\pi}{4})=2\)\(f(\pi)=0\),做出適合題意的圖像,由圖像可知,

將給定區間的寬度轉化為用周期來刻畫,得到\(\cfrac{T}{4}+k\cdot \cfrac{T}{2}=\pi-\cfrac{\pi}{4}=\cfrac{3\pi}{4}\)\(k\in N^*\)

\(T=\cfrac{3\pi}{1+2k}\),則\(\omega=\cfrac{2\pi}{T}=\cfrac{2(2k+1)}{3}\)\(k\in N^*\)

又由於\(f(x)\)在區間\((\cfrac{\pi}{4},\cfrac{\pi}{3})\)上單調,則\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\)[1]

\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\)

\(T\geqslant \cfrac{\pi}{6}\),故\(\omega=\cfrac{2\pi}{T}\leqslant 12\)

\(\cfrac{2(2k+1)}{3}\leqslant 12\),則\(k\leqslant \cfrac{17}{2}\)\(k\in N\)

所以,符合條件的\(k=0\)\(1\)\(\cdots\)\(8\)

則符合題意的\(\omega\)的值共有\(9\)個;

法2:由於\(f(\cfrac{\pi}{4})=2\)\(f(\pi)=0\),則\(2sin(\omega\cdot \cfrac{\pi}{4}+\phi)=2\)\(2sin(\omega\cdot \pi+\phi)=0\)

\(\left\{\begin{array}{l}{\omega\cdot \cfrac{\pi}{4}+\phi=2k_1\pi+\cfrac{\pi}{2},k_1\in Z①}\\{\omega\cdot \pi+\phi=k_2\pi,k_2\in Z②}\end{array}\right.\)

②-①得到,\(\cfrac{3\pi}{4}\cdot \omega=(k_2-2k_1)\pi-\cfrac{\pi}{2}\)

由於\(k_1\in Z\)\(k_2\in Z\),故\(k_2-2k_1\in Z\),令\(k_2-2k_1=k\)

則上式轉化為\(\cfrac{3\pi}{4}\cdot \omega=k\pi-\cfrac{\pi}{2}\)\(k\in Z\)

\(\omega=\cfrac{2(2k-1)}{3}\),又由於\(\omega>0\),故\(k\in N^*\)

又由於\(f(x)\)在區間\((\cfrac{\pi}{4},\cfrac{\pi}{3})\)上單調,則\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\)

\(T\geqslant \cfrac{\pi}{6}\),故\(\omega=\cfrac{2\pi}{T}\leqslant 12\)

\(\cfrac{2(2k-1)}{3}\leqslant 12\),則\(k\leqslant \cfrac{19}{2}\)\(k\in N\)

故符合條件的\(k=1\)\(2\)\(\cdots\)\(9\)

則符合題意的\(\omega\)的值共有\(9\)個;

解后反思:本題目容易犯錯:當解得\(\omega\)的表達式后,用\(\omega\)的某一個值為切入點求得\(\phi\)的值,然后利用單調性求\(\omega\)的個數,這個思路是錯誤的;

例2 若函數\(y=2\sin\omega x\)在區間\(\left[-\cfrac{\pi}{3},\cfrac{\pi}{4}\right]\)上的最小值是\(-2\),求\(\omega\)的取值范圍。

分析:由於是涉及函數的值域,故我們一般是先求出整體自變量\(\omega x\)的取值范圍,故分類討論如下:

\(\omega >0\)時,由\(-\cfrac{\pi}{3}\leq x\leq \cfrac{\pi}{4}\),故\(-\cfrac{\omega\pi}{3}\leq x\leq \cfrac{\omega\pi}{4}\)

由於函數的最小值是\(-2\),故需要滿足條件\(-\cfrac{\omega\pi}{3}\leq -\cfrac{\pi}{2}\),解得\(\omega \ge \cfrac{3}{2}\)

\(\omega <0\)時,由\(-\cfrac{\pi}{3}\leq x\leq \cfrac{\pi}{4}\),故\(\cfrac{\omega\pi}{4}\leq x\leq -\cfrac{\omega\pi}{3}\)

由於函數的最小值是\(-2\),故需要滿足條件\(\cfrac{\omega\pi}{4}\leq -\cfrac{\pi}{2}\),解得\(\omega \leq -2\)

\(\omega\)的取值范圍為\((-\infty,-2]\cup[\cfrac{3}{2},+\infty)\)

例3 【三輪模擬考試理科用題】已知函數\(f(x)=sinx+acosx\)的圖像的一條對稱軸是\(x=\cfrac{5\pi}{3}\),則函數\(g(x)=asinx+cosx\)的最大值是_________.

分析:\(f(x)=sinx+acosx=\sqrt{a^2+1}sin(x+\phi),tan\phi =a\)

由題目可知,\(\cfrac{5\pi}{3}+\phi=k\pi+\cfrac{\pi}{2}\),故\(\phi=k\pi+\cfrac{\pi}{2}-\cfrac{5\pi}{3}=k\pi-\cfrac{7\pi}{6}\)

由於\(\phi\)的值只需要考慮其存在性,故從簡原則,

\(k=1\)\(\phi=-\cfrac{\pi}{6}\),從而\(a=tan\phi=tan(-\cfrac{\pi}{6})=-\cfrac{\sqrt{3}}{3}\)

所以\(g(x)=-\cfrac{\sqrt{3}}{3}sinx+cosx=\cfrac{2\sqrt{3}}{3}sin(x+\theta),tan\theta=-\sqrt{3}\)

\(g(x)_{max}=\cfrac{2\sqrt{3}}{3}\).

例4 【三輪模擬考試理科用題】已知函數\(f(x)=2cos(\omega x+\cfrac{\pi}{3})(\omega >0)\)的兩個不同的對稱中心分別為點\((\cfrac{\pi}{12},0)\),點\((\cfrac{\pi}{4},0)\),則\(\omega\)取得【】

$A.最小值6$ $B.最大值6$ $C.最小值3$ $D.最大值3$

分析:有題目可知\(\omega =\cfrac{2\pi}{T}\)\(T\)越小(越大),則\(\omega\)越大(越小);

若題目中已知的兩個對稱中心是相鄰的,則此時\(T\)最大,

\(\cfrac{T}{2}=\cfrac{\pi}{4}-\cfrac{\pi}{12}=\cfrac{\pi}{6}\)

故此時\(T_{max}=\cfrac{\pi}{3}\),故\(\omega_{min} =\cfrac{2\pi}{\cfrac{\pi}{3}}=6\).

例5 【圖像移動后和原圖像重合】【2017•臨沂模擬】將函數\(f(x)=sin(\omega x+\phi)\)的圖像向左平移\(\cfrac{\pi}{2}\)個單位長度,若所得圖像與原圖像重合,則\(\omega\)的值不可能等於

$A.4$ $B.6$ $C.8$ $D.12$

分析:給定函數的周期是\(T=\cfrac{2\pi}{\omega}\)

向左平移\(\cfrac{\pi}{2}\)個單位長度,所得圖像與原圖像重合,

則平移長度必然等於周期的整數倍,

則有\(\cfrac{\pi}{2}=k\cdot \cfrac{2\pi}{\omega}(k\in Z)\)

\(\omega=4k(k\in Z)\),故\(\omega\)的值不可能等於6。

例6 【圖像移動后和原圖像對稱軸重合】【2017•臨沂模擬】將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象分別向左、向右各平移\(\cfrac{\pi}{4}\)個單位長度后,所得的兩個圖象對稱軸重合,則\(\omega\)的最小值為________.

法1:將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象向左平移\(\cfrac{\pi}{4}\)個單位長度后,

得到\(y=2sin[\omega (x+\cfrac{\pi}{4})-\cfrac{\pi}{4}]=2sin(\omega x+\cfrac{(\omega-1)\pi}{4})\)

將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象向右平移\(\cfrac{\pi}{4}\)個單位長度后,

得到\(y=2sin[\omega (x-\cfrac{\pi}{4})-\cfrac{\pi}{4}]=2sin(\omega x-\cfrac{(\omega+1)\pi}{4})\)

由於平移后的對稱軸重合,故自變量的整體差值為\(k\pi\)

\(\omega x+\cfrac{(\omega-1)\pi}{4}=\omega x-\cfrac{(\omega+1)\pi}{4}+k\pi(k\in Z)\)

化簡得到\(\omega=2k(k\in Z)\),又\(\omega>0\)

\(\omega_{min}=2\)

法2:【暫作記錄,再思考】

將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象向左平移\(\cfrac{\pi}{4}\)個單位長度后,

由於周期的作用,其實平移的長度是\(\cfrac{\pi\omega}{4}\)

將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象向右平移\(\cfrac{\pi}{4}\)個單位長度后,

由於周期的作用,其實平移的長度也是\(\cfrac{\pi\omega}{4}\)

這樣的平移效果,相當於視原圖像不動,再將其圖像一次平移距離為\(\cfrac{2\pi\omega}{4}\)

由於平移后的對稱軸重合,故平移距離應該是\(k\pi\),即\(\cfrac{2\pi\omega}{4}=k\pi\)

化簡得到\(\omega=2k(k\in Z)\),又\(\omega>0\)

\(\omega_{min}=2\)

解后反思:

1、將周期函數的圖像平移后,若所得圖像與原圖像重合,則平移長度必然等於周期的整數倍,或者平移前后的自變量整體差值為\(k\cdot 2\pi(k\in Z)\)

比如,將\(y=sin(\omega x+\cfrac{\pi}{4})\),向左平移\(\cfrac{\pi}{3}\)個單位,所得圖像與原圖像重合,求正整數\(\omega\)的最小值;

思路1:由平移長度必然等於周期的整數倍得到,\(\cfrac{\pi}{3}=k\cdot \cfrac{2\pi}{\omega}\)

整理得到\(\omega=6k(\omega >0)\),故\(\omega_{min}=6\)

思路2:由平移前后的自變量整體差值為\(k\cdot 2\pi(k\in Z)\)得到,\(\omega(x+\cfrac{\pi}{3})+\cfrac{\pi}{4}=\omega x+\cfrac{\pi}{4}+2k\pi\)

整理得到\(\omega=6k(\omega >0)\),故\(\omega_{min}=6\)

2、將周期函數的圖像平移后,若所得圖像與原圖像對稱軸重合,則平移長度必然等於半周期的整數倍,或者平移前后的自變量整體差值為\(k\cdot \pi(k\in Z)\)

可仿上引例,自行舉例。

例7 【2016天津高考文科第8題】已知\(f(x)=sin^2\cfrac{\omega x}{2}+\cfrac{1}{2}sin\omega x-\cfrac{1}{2}(\omega>0)\)\(x\in R\),若\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點,則\(\omega\)的取值范圍是【D】

$A、(0,\cfrac{1}{8}]$ $B、(0,\cfrac{1}{4}]\cup [\cfrac{5}{8},1)$ $C、(0,\cfrac{5}{8}]$ $D、(0,\cfrac{1}{8}]\cup [\cfrac{1}{4},\cfrac{5}{8}]$

分析:\(f(x)=\cfrac{1-cos\omega x}{2}+\cfrac{1}{2}sin\omega x-\cfrac{1}{2}=\cfrac{1}{2}(sin\omega x-cos\omega x)\)

\(=\cfrac{\sqrt{2}}{2}sin(\omega x-\cfrac{\pi}{4})\)

法1:補集法,從數的角度入手分析,假設\(f(x)\)在區間\((\pi,2\pi)\)內有零點\(x_0\),使得\(f(x)=\cfrac{\sqrt{2}}{2}sin(\omega x_0-\cfrac{\pi}{4})=0\)

\(\omega x_0-\cfrac{\pi}{4}=k\pi(k\in Z)\),即\(x_0=\cfrac{k\pi}{\omega}+\cfrac{\pi}{4\omega}\)

\(x_0=\cfrac{(4k+1)\pi}{4\omega}\),又\(\pi<x_0<2\pi\)

\(\pi<\cfrac{4k+1}{4\omega}<2\pi(k\in Z)\),即\(\left\{\begin{array}{l}{4\omega<4k+1}\\{8\omega>4k+1}\end{array}\right.\)

由於\(\omega>0\),故給\(k\)賦值從\(k=0\)開始,

①當\(k=0\)時,\(\left\{\begin{array}{l}{4\omega<1}\\{8\omega>1}\end{array}\right.\),即\(\cfrac{1}{8}<\omega<\cfrac{1}{4}\)

②當\(k=1\)時,\(\left\{\begin{array}{l}{4\omega<4+1}\\{8\omega>4+1}\end{array}\right.\),即\(\cfrac{5}{8}<\omega<\cfrac{5}{4}\)

③當\(k=2\)時,\(\left\{\begin{array}{l}{4\omega<8+1}\\{8\omega>8+1}\end{array}\right.\),即\(\cfrac{9}{8}<\omega<\cfrac{9}{4}\)

④當\(k=3\)時,\(\left\{\begin{array}{l}{4\omega<12+1}\\{8\omega>12+1}\end{array}\right.\),即\(\cfrac{13}{8}<\omega<\cfrac{13}{4}\)

⑤當\(k=4,\cdots\)時,\(\cdots\)

以上情形取並集,得到當函數\(f(x)\)在區間\((\pi,2\pi)\)內有零點\(x_0\)時,\(\omega\)的取值范圍是\((\cfrac{1}{8},\cfrac{1}{4})\cup(\cfrac{5}{8},+\infty)\)

故函數\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點時,\(\omega\)的取值范圍是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故選\(D\)

法2:直接法,從數的角度入手分析,函數\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點,則\(sin(\omega x_0-\cfrac{\pi}{4})=0\)在區間\((\pi,2\pi)\)內無解,

\(k\pi<\omega x-\cfrac{\pi}{4}<k\pi+\pi(k\in Z)\),即\(k\pi+\cfrac{\pi}{4}<\omega x<k\pi+\cfrac{5\pi}{4}(k\in Z)\)

\(\cfrac{k\pi}{\omega}+\cfrac{\pi}{4\omega}<x_0<\cfrac{k\pi}{\omega}+\cfrac{5\pi}{4\omega}\)

\(\cfrac{(4k+1)\pi}{4\omega}<x<\cfrac{(4k+5)\pi}{4\omega}\)恆成立,由於\(x\in (\pi,2\pi)\)

\(\cfrac{(4k+1)\pi}{4\omega}\leq \pi\)\(2\pi\leq \cfrac{(4k+5)\pi}{4\omega}\)

\(\left\{\begin{array}{l}{4\omega\ge 4k+1}\\{8\omega\leq 4k+5}\end{array}\right.\)

①當\(k=-1\)時,\(4\omega\ge -3\)\(8\omega \leq 1\),解得\(0<\omega\leq \cfrac{1}{8}\)

②當\(k=0\)時,\(4\omega\ge 1\)\(8\omega \leq 5\),解得\(\cfrac{1}{4}\leq \omega\leq \cfrac{5}{8}\)

③當\(k=1\)時,\(4\omega\ge 5\)\(8\omega \leq 9\),解得\(\cfrac{5}{4}\leq \omega\leq \cfrac{9}{8}\),實質為空集;

④當\(k=2\)時,\(4\omega\ge 9\)\(8\omega \leq 13\),解得\(\cfrac{9}{4}\leq \omega\leq \cfrac{13}{8}\),實質為空集;

⑤當\(k=3,\cdots\)時,等等,解集都是空集;

綜上所述,函數\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點時,\(\omega\)的取值范圍是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故選\(D\)

法3:高考解法,從數的角度入手分析,接上述解法,得到

\(sin(\omega x_0-\cfrac{\pi}{4})=0\)在區間\((\pi,2\pi)\)內無解,

\(x=\cfrac{k\pi+\frac{\pi}{4}}{\omega}\not\in (\pi,2\pi)\)

\(\omega \not\in (\cfrac{1}{8},\cfrac{1}{4})\cup (\cfrac{5}{8},\cfrac{5}{4})\cup (\cfrac{9}{8},\cfrac{9}{4})\cup\cdots = (\cfrac{1}{8},\cfrac{1}{4})\cup (\cfrac{5}{8},+\infty)\)

由於函數\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點,\(\omega\)的取值范圍是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故選\(D\)

法4:如下圖所示,從形的角度入手分析:

要使得函數在\((\pi,2\pi)\)內沒有零點,則有以下情形成立:

\(2\pi\leq \cfrac{\pi}{4\omega}\),解得\(0<\omega\leq \cfrac{1}{8}\)

\(\left\{ \begin{array}{l}{ \cfrac{\pi}{4\omega}\leq \pi }\\ {2\pi \leq \cfrac{5\pi}{4\omega}}\end{array}\right.\) ,解得$ \cfrac{1}{4}<\omega \leq \cfrac{5}{8}$;

\(\left\{\begin{array}{l}{\cfrac{5\pi}{4\omega}\leq \pi}\\{2\pi\leq\cfrac{9\pi}{4\omega}} \end{array}\right.\),解得\(\cfrac{5}{4}<\omega\leq \cfrac{9}{8}\);即\(\omega\in \varnothing\)

\(\left\{\begin{array}{l}{\cfrac{9\pi}{4\omega}\leq \pi}\\{2\pi\leq\cfrac{13\pi}{4\omega}} \end{array}\right.\),解得\(\cfrac{9}{4}<\omega\leq \cfrac{13}{8}\);即\(\omega\in \varnothing\)

\(\cdots\),解得\(\omega\in \varnothing\)

綜上所述,\(\omega\)的取值范圍是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故選\(D\)

例8 【2019屆高三理科數學題】若函數\(f(x)=2sin\omega x(\omega>0)\)在區間\((0,2\pi)\)上恰有兩個極大值和一個極小值,則\(\omega\)的取值范圍是【】

$A、(\cfrac{5}{4},\cfrac{7}{4}]$ $B、(\cfrac{3}{4},\cfrac{5}{4}]$ $C、(1,\cfrac{5}{4}]$ $D、(\cfrac{3}{4},\cfrac{5}{4}]$

分析:有題目可知,\(\left\{\begin{array}{l}{\cfrac{5}{4}\cdot T<2\pi ①}\\{2\pi\leq \cfrac{7}{4}\cdot T②}\end{array}\right.\)

注意由於是在開區間\((0,2\pi)\)上,故①沒有等號,而②有等號;

\(\left\{\begin{array}{l}{\cfrac{5}{4}\cdot \cfrac{2\pi}{\omega}<2\pi }\\{2\pi\leq \cfrac{7}{4}\cdot \cfrac{2\pi}{\omega}}\end{array}\right.\),解得\(\cfrac{5}{4}<\omega\leq \cfrac{7}{4}\)。故選\(A\)

例9 【2019屆高三理科二輪數學題】已知函數\(f(x)=cos(\omega x-\cfrac{\pi}{3})(\omega >0)\),且\(f(\cfrac{2\pi}{3})=f(\cfrac{5\pi}{6})\),若\(f(x)\)\((\cfrac{2\pi}{3},\cfrac{5\pi}{6})\)上有最大值無最小值,則\(\omega\)的最大值為【】

$A.\cfrac{4}{9}$ $B.\cfrac{28}{9}$ $C.\cfrac{52}{9}$ $D.\cfrac{100}{9}$

分析:由\(f(\cfrac{2\pi}{3})=f(\cfrac{5\pi}{6})\)可知,函數\(f(x)\)有一條對稱軸為\(x=\cfrac{3\pi}{4}\)

且滿足\(\omega\cdot \cfrac{3\pi}{4}-\cfrac{\pi}{3}=2k\pi\)\(k\in Z\),即\(\omega =\cfrac{8}{3}k+\cfrac{4}{9}\)

又函數\(f(x)\)\((\cfrac{2\pi}{3},\cfrac{5\pi}{6})\)上有最大值無最小值,

\(T>\cfrac{5\pi}{6}-\cfrac{2\pi}{3}=\cfrac{\pi}{6}\),即\(\cfrac{2\pi}{\omega}>\cfrac{\pi}{6}\)

\(\omega <12\),又由\(\omega =\cfrac{8}{3}k+\cfrac{4}{9}<12\),解得\(k\leq 4\)

故當\(k=4\)時,\(\omega_{max}=\cfrac{8}{3}\times 4+\cfrac{4}{9}=\cfrac{100}{9}\),故選\(D\)

例10 【2019三輪模擬考試理科用題】已知函數\(f(x)=\sqrt{3}sin\cfrac{\omega x}{2}cos\cfrac{\omega x}{2}+cos^2\cfrac{\omega x}{2}-\cfrac{1}{2}(\omega >0)\),把\(f(x)\)的圖像向右平移\(\cfrac{\pi}{6\omega}\)個單位,得到函數\(g(x)\)的圖像,若\(g(x)\)在區間\([-\cfrac{\pi}{4},\cfrac{3\pi}{4}]\)上單調遞增,且在\([0,2\pi]\)上有兩個零點,則實數\(\omega\)的取值范圍是____________。

分析:將函數\(f(x)\)化簡,得到\(f(x)=sin(\omega x+\cfrac{\pi}{6})\),則平移得到\(g(x)=sin\omega x\),做出函數\(g(x)\)的簡圖如下,

由圖可知,若\(g(x)\)在區間\([-\cfrac{\pi}{4},\cfrac{3\pi}{4}]\)上單調遞增,且在\([0,2\pi]\)上有兩個零點,只需要滿足條件

\(\left\{\begin{array}{l}{\cfrac{3\pi}{4}\leq \cfrac{\pi}{2\omega}}\\{\cfrac{\pi}{\omega}\leq 2\pi }\end{array}\right.\),解得\(\cfrac{1}{2}\leq \omega \leq \cfrac{2}{3}\);即所求范圍為\([\cfrac{1}{2},\cfrac{2}{3}]\)

例11 【2019三輪模擬考試理科用題】設函數\(f(x)=sin(\cfrac{\pi}{\omega}x+\phi)\),(\(\omega>0\)\(0\leq \phi\leq \pi\))是\(R\)上的偶函數,且在\((0,3)\)上單調遞減,則\(\omega\)的最小值為【】

$A.\cfrac{1}{3}$ $B.1$ $C.3$ $D.\cfrac{4}{3}$

分析:先由\(R\)上的偶函數,得到\(\phi=\cfrac{\pi}{2}\),故函數轉化為\(f(x)=cos\cfrac{\pi}{\omega}x\),做出其函數簡圖,利用圖像得到,\(3\leq \omega\),即\(\omega_{min}=3\),故選\(C\)

例12 【2019三輪模擬考試理科用題】已知函數\(f(x)=sin(\omega x+\phi)(\omega>0,\phi\in (0,2\pi))\)的部分圖像如圖所示,且\(f(x)\)的圖像的一個對稱中心為\((\cfrac{\pi}{6},0)\),則\(\omega\)的最小值為【】

$A.4$ $B.3$ $C.2$ $D.1$

法1:由於\(sin\phi=\cfrac{\sqrt{3}}{2}\),則\(\phi=\cfrac{\pi}{3}\),或者\(\phi=\cfrac{2\pi}{3}\)

\(\phi=\cfrac{\pi}{3}\)時,由於\((\cfrac{\pi}{6},0)\)為其對稱中心,則\(\cfrac{\pi}{6} \omega +\cfrac{\pi}{3}=k\pi(k\in Z)\),求得\(\omega =6k-2\)\(\omega_{min}=4\)

\(\phi=\cfrac{2\pi}{3}\)時,由於\((\cfrac{\pi}{6},0)\)為其對稱中心,則\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),求得\(\omega =6k-4\)\(\omega_{min}=2\)

\(\omega_{min}=2\),故選\(C\)。其實此方法還可以再優化,如下,

法2:利用相位法,由於函數\(f(x)\)可以看成先有函數\(y=sinx\)向左平移\(\phi\)的單位得到\(y=sin(x+\phi)\),然后再伸縮得到,

由於圖像的最高點在\(y\)軸的左側,故平移的距離一定大於\(\cfrac{\pi}{2}\),(或者說函數與\(y\)軸的交點在函數的單調遞減區間上,故由\(sin\phi=\cfrac{\sqrt{3}}{2}\),平移的距離一定大於\(\cfrac{\pi}{2}\),)

以及\(\phi\in (0,2\pi)\),只能得到\(\phi=\cfrac{2\pi}{3}\),又由於對稱中心為\((\cfrac{\pi}{6},0)\)

\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),即\(\omega =6k-4\),從而解得\(\omega_{min}=2\);故選\(C\)

法3:導數法,\(f'(x)=\omega cos(\omega x+\phi)\),由圖像可知,當\(x=0\)時,\(f'(x)<0\),即\(\omega cos\phi<0\)

\(sin\phi=\cfrac{\sqrt{3}}{2}\),故\(\phi=\cfrac{2\pi}{3}\),又由於對稱中心為\((\cfrac{\pi}{6},0)\)

\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),即\(\omega =6k-4\),從而解得\(\omega_{min}=2\);故選\(C\)

例13 【2019屆高三理科數學第三輪模擬訓練題】已知\(\omega\in N^*\),函數\(f(x)=tan(\omega x+\cfrac{\pi}{6})\)的圖像的一個對稱中心為\((\cfrac{\pi}{3},0)\),則\(\omega\)的一個可能取值為【】

$A.2$ $B.3$ $C.4$ $D.5$

分析:由題可知,\(\cfrac{\pi}{3}\omega +\cfrac{\pi}{6}=\cfrac{k\pi}{2}\)\(k\in Z\),則\(2\omega+1=3k\),逐項代入驗證選\(C\)

例14 將函數\(f(x)=2sin(\omega x-\cfrac{\pi}{3})\)(\(\omega>0\))的圖像向左平移\(\cfrac{\pi}{3\omega}\)個單位,得到函數\(y=g(x)\)的圖像,若\(y=g(x)\)在區間\([-\cfrac{\pi}{6},\cfrac{\pi}{4}]\)上為增函數,則\(\omega\)的最大值為________。

解析:由題設可知,\(y=g(x)=2sin[\omega(x+\cfrac{\pi}{3\omega})-\cfrac{\pi}{3}]=2sin\omega x\)(\(\omega>0\)),

由於\(y=g(x)\)在區間\([-\cfrac{\pi}{6},\cfrac{\pi}{4}]\)上為增函數,且\(\omega>0\)

則有\(-\cfrac{\omega\pi}{6}\leqslant \omega x\leqslant \cfrac{\omega\pi}{4}\),且有\([-\cfrac{\omega\pi}{6},\cfrac{\omega\pi}{4}]\subseteq [-\cfrac{\pi}{2},\cfrac{\pi}{2}]\)

所以\(\left\{\begin{array}{l}{-\cfrac{\omega\pi}{6}\geqslant -\cfrac{\pi}{2}}\\{\cfrac{\omega\pi}{4}\leqslant \cfrac{\pi}{2}}\end{array}\right.\),解得\(\left\{\begin{array}{l}{\omega\leqslant 3}\\{\omega\leqslant 2}\end{array}\right.\)

\(\omega \leqslant 2\),所以\(\omega\)的最大值為\(2\).

例14+1 【2020屆高三文科數學】定義在\([0,\pi]\)上的函數\(y=\sin(\omega x-\cfrac{\pi}{6})(\omega >0)\)有零點,且值域$M\in $ \([-\cfrac{1}{2},\) \(+\infty)\),則\(\omega\)取值范圍是【】

$A.[\cfrac{1}{2},\cfrac{4}{3}]$ $B.[\cfrac{4}{3},2]$ $C.[\cfrac{1}{6},\cfrac{4}{3}]$ $D.[\cfrac{1}{6},2]$

分析:由於\(x\in [0,\pi]\)\(\omega >0\),則\(\omega x-\cfrac{\pi}{6}\in [-\cfrac{\pi}{6},\omega x-\cfrac{\pi}{6}]\)

在以\(\omega x-\cfrac{\pi}{6}\)為橫軸做函數的圖像時,由於函數要有零點,則必須滿足\(\omega x-\cfrac{\pi}{6}\geqslant 0\)①;[2]

又由於值域\(M\in [-\cfrac{1}{2},+\infty)\),實質是值域\(M\in [-\cfrac{1}{2},1]\),則必須滿足\(\omega x-\cfrac{\pi}{6}\leqslant\cfrac{7\pi}{6}\)②;[3]

聯立①②,解得\(\omega \in [\cfrac{1}{6},\cfrac{4}{3}]\),故選\(C\)

解析式含參φ

例15 已知函數\(f(x)=\sin(2x+\phi)+a\cos(2x+\phi)(0<\phi<\pi)\)的最大值為\(2\),且滿足\(f(x)=f(\cfrac{\pi}{2}-x)\),則\(\phi=\)【】

$A.\cfrac{\pi}{6}$ $B.\cfrac{\pi}{3}$ $C.\cfrac{\pi}{3}或\cfrac{2\pi}{3}$ $D.\cfrac{\pi}{6}或\cfrac{5\pi}{6}$

分析:由於\(f(x)=f(\cfrac{\pi}{2}-x)\),故函數的對稱軸為\(x=\cfrac{\pi}{4}\)

又由於\(f(x)_{max}=\sqrt{1+a^2}=2\),故\(a=\pm 3\),則\(f(x)=2\sin(2x+\phi\pm \cfrac{\pi}{3})\)

於是有\(2\times \cfrac{\pi}{4}+\phi\pm \cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}\)\(k\in Z\)

\(\phi=k\pi\pm \cfrac{\pi}{3}\in (0,\pi)\),故\(\phi=\cfrac{\pi}{3}\)\(\phi=\cfrac{2\pi}{3}\),故選\(C\).

例15 【2018三輪模擬考試理科用題】設函數\(f(x)=cos2x-\sqrt{3}sin2x\),把\(y=f(x)\)的圖像向左平移\(\phi(|\phi|<\cfrac{\pi}{2})\)個單位,得到的函數圖像中的一個最低點坐標是\((-\cfrac{\pi}{12},-2)\),一個零點坐標是\((\cfrac{\pi}{6},0)\),則\(f(\phi)\)的值等於多少?

分析:先變形得到\(f(x)=2cos(2x+\cfrac{\pi}{3})\),將其平移得到\(y=2cos[2(x+\phi)+\cfrac{\pi}{3}]\)

由其最低點坐標得到\(2\times(-\cfrac{\pi}{12})+2\phi+\cfrac{\pi}{3}=2k\pi+\pi\)

從而\(\phi=k\pi+\cfrac{5\pi}{12}\),令\(k=0\)解得\(\phi=\cfrac{5\pi}{12}\in (-\cfrac{\pi}{2},-\cfrac{\pi}{2})\),故\(f(\cfrac{5\pi}{12})=-\sqrt{3}\)

反思:在求解\(\phi\)值時,還可以利用題目給定的零點來計算;還可以先轉化為\(f(x)=-2sin(2x-\cfrac{\pi}{6})\)來計算;

例16 【三輪模擬考試理科用題】【2018遼寧遼陽一模】將函數\(y=sin2x-\sqrt{3}cos2x\)的圖像向左平移\(\phi(0\leq \phi\leq \cfrac{\pi}{2})\)個單位長度后得到\(f(x)\)的圖像,若\(f(x)\)\((\cfrac{\pi}{4},\cfrac{\pi}{2})\)上單調遞減,則\(\phi\)的取值范圍是【】

$A.[\cfrac{\pi}{3},\cfrac{\pi}{2}]$ $B.[\cfrac{\pi}{6},\cfrac{\pi}{2}]$ $C.[\cfrac{\pi}{3},\cfrac{5\pi}{12}]$ $D.[\cfrac{\pi}{6},\cfrac{5\pi}{12}]$

法1:由題目得到\(y=sin2x-\sqrt{3}cos2x=2sin(2x-\cfrac{\pi}{3})\),則將其向左平移\(\phi\)個單位長度后得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\)

\(2k\pi+\cfrac{\pi}{2}\leq 2x+2\phi-\cfrac{\pi}{3}\leq 2k\pi+\cfrac{3\pi}{2}\),得到單減區間\([k\pi+\cfrac{5\pi}{12}-\phi,k\pi+\cfrac{11\pi}{12}-\phi]\)\(k\in Z\)

由於\(f(x)\)\((\cfrac{\pi}{4},\cfrac{\pi}{2})\)上單調遞減,故必然滿足\((\cfrac{\pi}{4},\cfrac{\pi}{2})\subseteq [k\pi+\cfrac{5\pi}{12}-\phi,k\pi+\cfrac{11\pi}{12}-\phi]\)

\(\left\{\begin{array}{l}{k\pi+\cfrac{5\pi}{12}-\phi\leq \cfrac{\pi}{4} }\\{\cfrac{\pi}{2}\leq k\pi+\cfrac{11\pi}{12}-\phi}\end{array}\right.\);解得\(k\pi+\cfrac{\pi}{6}\leq \phi \leq k\pi+\cfrac{5\pi}{12}(k\in Z)\)

\(k=0\),即得到\(\cfrac{\pi}{6}\leq \phi \leq \cfrac{5\pi}{12}\),故選\(D\)

法2:由題目得到\(y=sin2x-\sqrt{3}cos2x=2sin(2x-\cfrac{\pi}{3})\),則將其向左平移\(\phi\)個單位長度后得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\)

又由於模板函數\(y=sin2x\)的靠近原點的單調遞減區間為\([\cfrac{\pi}{4},\cfrac{3\pi}{4}]\),故將\(y=sin2x\)向左平移\(\phi-\cfrac{\pi}{6}\)即得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\)

故單調遞減區間相應的變化為\([\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6},\cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}]\),又題目給定\(f(x)\)\((\cfrac{\pi}{4},\cfrac{\pi}{2})\)上單調遞減,

\((\cfrac{\pi}{4},\cfrac{\pi}{2})\subseteq [\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6},\cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}]\)

\(\left\{\begin{array}{l}{\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6}\leq \cfrac{\pi}{4} }\\{\cfrac{\pi}{2}\leq \cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}}\end{array}\right.\);得到\(\cfrac{\pi}{6}\leq \phi \leq \cfrac{5\pi}{12}\),故選\(D\)

例17 【二輪模擬考試理科用題】【2018福建福州期末】將函數\(y=f(x)=2sinx+cosx\)的圖像向右平移\(\phi\)個單位長度,得到函數\(y=g(x)=2sinx-cosx\),則\(sin\phi\)=__________。

分析:將函數\(f(x)\)化簡為\(f(x)==\sqrt{5}(sinx\cdot \cfrac{2}{\sqrt{5}}+cosx\cdot \cfrac{1}{\sqrt{5}})=\sqrt{5}sin(x+\alpha)\),其中\(cos\alpha=\cfrac{2}{\sqrt{5}}\)\(sin\alpha=\cfrac{1}{\sqrt{5}}\),同理將函數\(g(x)\)化簡為\(g(x)=\sqrt{5}sin(x-\alpha)\)

由於函數\(f(x)\)向右平移\(\phi\)個單位長度,得到\(y=\sqrt{5}sin(x-\phi+\alpha)\)

\(\sqrt{5}sin(x-\phi+\alpha)=\sqrt{5}sin(x-\alpha)\)對任意\(x\in R\)恆成立,

故有\(x-\phi+\alpha=2k\pi+x-\alpha\),即\(\phi=2\alpha-2k\pi\)\(k\in Z\)

\(sin\phi=sin(2\alpha-2k\pi)=sin2\alpha=2sin\alpha\cdot cos\alpha=2\times\cfrac{2}{\sqrt{5}}\times\cfrac{1}{\sqrt{5}}=\cfrac{4}{5}\).

例18 【二輪模擬訓練限時訓練5第10題】已知函數\(f(x)=cos(2x-\cfrac{2\pi}{3})+sin(2x-\cfrac{3\pi}{2})\),將函數\(f(x)\)的圖像向左平移\(\phi(\phi>0)\)個單位長度,得到函數\(g(x)\)的圖像,若函數\(g(x)\)的圖像關於\(y\)軸對稱,則\(\phi\)的最小值是【】

$A.\cfrac{\pi}{6}$ $B.\cfrac{\pi}{3}$ $C.\cfrac{2\pi}{3}$ $D.\cfrac{5\pi}{6}$

分析:\(f(x)=sin(2x+\cfrac{\pi}{6})\)\(g(x)=sin(2x+2\phi+\cfrac{\pi}{6})\),由於函數\(g(x)\)的圖像關於\(y\)軸對稱,則函數\(g(x)\)\(x=0\)時取到最值,這樣將選項代入驗證,選\(A\)

例19 【2019屆三輪模擬訓練限時訓練用題】要得到函數\(y=sin(6x-\phi)\)(\(-3\pi<\phi<-\pi\))的圖像,只需要將函數\(y=sin6x\)的圖像向右平移\(\cfrac{\pi}{12}\)個單位,則\(\phi\)的值為【】

$A.-\cfrac{5\pi}{4}$ $B.-2\pi$ $C.-\cfrac{5\pi}{2}$ $D.-\cfrac{3\pi}{2}$

法1:驗證法,將函數\(y=sin6x\)的圖像向右平移\(\cfrac{\pi}{12}\)個單位,得到\(y=sin(6x-\cfrac{\pi}{2})\),驗證選項\(D\),由\(y=sin(6x+\cfrac{3\pi}{2})=sin(6x+2\pi-\cfrac{\pi}{2})=sin(6x-\cfrac{\pi}{2})\),故選項\(D\)正確,同理可以驗證排除其他的選項;

法2:計算賦值法,將函數\(y=sin6x\)的圖像向右平移\(\cfrac{\pi}{12}\)個單位,得到\(y=sin(6x-\cfrac{\pi}{2})\)

要使得其圖像和函數\(y=sin(6x-\phi)\)(\(-3\pi<\phi<-\pi\))的圖像重合,則需要\(6x-\cfrac{\pi}{2}+2k\pi=6x-\phi\)

\(\phi=-2k\pi+\cfrac{\pi}{2}(k\in Z)\),令\(k=1\),得到\(\phi=-\cfrac{3\pi}{2}\in (-3\pi,-\pi)\),故選\(D\)

例20 【2019屆高三理科數學第三輪模擬訓練題】將函數\(f(x)=sin2x+\sqrt{3}cos2x\)的圖像向右平移\(\phi(\phi>0)\)個單位,再向上平移\(1\)個單位,所得的圖像經過\((\cfrac{\pi}{8},1)\),則\(\phi\)的最小值為【】

$A.\cfrac{5\pi}{12}$ $B.\cfrac{7\pi}{12}$ $C.\cfrac{5\pi}{24}$ $D.\cfrac{7\pi}{24}$

分析:函數經過相應的變換得到,\(y=2sin(2x-2\phi+\cfrac{\pi}{3})+1\),由於函數圖像經過\((\cfrac{\pi}{8},1)\)

則有\(2\times \cfrac{\pi}{8}-2\phi+\cfrac{\pi}{3}=k\pi\)\(k\in Z\),變形整理得到,

\(\phi=\cfrac{k\pi}{2}+\cfrac{7\pi}{24}\)\(k\in Z\),令\(k=0\),得到\(\phi_{min}=\cfrac{7\pi}{24}\),故選\(D\).

給定區間含參

例21 【二輪模擬考試理科用題】【參數在區間端點處】【2018遼寧丹東期末】若函數\(f(x)=2sin(2x+\cfrac{\pi}{6})\)\([0,\cfrac{x_0}{3}]\)\([2x_0,\cfrac{7\pi}{6}]\)上都是單調遞增函數,則實數\(x_0\)的取值范圍是【】

$A.[\cfrac{\pi}{6},\cfrac{\pi}{2}]$ $B.[\cfrac{\pi}{3},\cfrac{\pi}{2}]$ $C.[\cfrac{\pi}{6},\cfrac{\pi}{3}]$ $D.[\cfrac{\pi}{4},\cfrac{3\pi}{8}]$

法1:從形上入手分析,正確、准確做出函數的圖像,是求解的先決條件。

由圖像能直觀的得到,要使得函數在\([0,\cfrac{x_0}{3}]\)\([2x_0,\cfrac{7\pi}{6}]\)上都是單調遞增函數,

則必須同時滿足條件\(\left\{\begin{array}{l}{\cfrac{x_0}{3}\leq \cfrac{\pi}{6}}\\{2x_0\ge \cfrac{2\pi}{3}}\end{array}\right.\),解得\(\cfrac{\pi}{3}\leq x_0\leq \cfrac{\pi}{2}\),故選\(B\).

法2:從數上入手分析,用常規方法先求得給定函數的單調遞增區間,由\(2k\pi-\cfrac{\pi}{2}\leq 2x+\cfrac{\pi}{6}\leq 2k\pi+\cfrac{\pi}{2}\)

解得單調遞增區間為\([k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{6}]\)\(k\in Z\)

\(k=0\)時,單增區間為\([-\cfrac{\pi}{3},\cfrac{\pi}{6}]\)

\(k=1\)時,單增區間為\([\cfrac{2\pi}{3},\cfrac{7\pi}{6}]\)

又題目要求函數在\([0,\cfrac{x_0}{3}]\)\([2x_0,\cfrac{7\pi}{6}]\)上都是單調遞增函數,

則必須同時滿足條件\(\left\{\begin{array}{l}{\cfrac{x_0}{3}\leq \cfrac{\pi}{6}}\\{2x_0\ge \cfrac{2\pi}{3}}\end{array}\right.\),解得\(\cfrac{\pi}{3}\leq x_0\leq \cfrac{\pi}{2}\),故選\(B\).

例22 【2020屆高三模擬訓練用題】【參數在區間端點處】若\(f(x)=\sin x+\sqrt{3}\cos x\)\([-m,m](m>0)\)上是增函數,則\(m\)的最大值為【】

$A.\cfrac{5\pi}{6}$ $B.\cfrac{2\pi}{3}$ $C.\cfrac{\pi}{6}$ $D.\cfrac{\pi}{3}$

分析:\(f(x)=\sin x+\sqrt{3}\cos x=2(\cfrac{1}{2}\sin x+\cfrac{\sqrt{3}}{2}\cos x)=2\sin(x+\cfrac{\pi}{3})\)

\([-m,m](m>0)\)上是增函數,將\(x+\cfrac{\pi}{3}\)視為整體,對比函數\(y=sinx\)的單調性可知,

\(\left\{\begin{array}{l}{-m+\cfrac{\pi}{3}\geqslant -\cfrac{\pi}{2}}\\{m+\cfrac{\pi}{3}\leqslant \cfrac{\pi}{2}}\end{array}\right.\) 解得\(\left\{\begin{array}{l}{m\leqslant \cfrac{5\pi}{6}}\\{m\leqslant \cfrac{\pi}{6}}\end{array}\right.\)

\(m\leqslant \cfrac{\pi}{6}\),故\(m\)的最大值為\(\cfrac{\pi}{6}\),故選\(C\).


  1. 由於\(f(\cfrac{\pi}{4})\)達到極值或最值,故題目雖說給定了函數單調[可能包含單調遞增或單調遞減兩種情形],其實只能是單調遞減,
    又由於單調區間的最大寬度等於半周期,故給定的單調區間的寬度必然小於或等於半周期; ↩︎

  2. 只有確保圖像經過原點(包含原點),才能保證函數至少有一個零點;用數的形式限制為\(\omega x-\cfrac{\pi}{6}\geqslant 0\)↩︎

  3. 當圖像從左往右延伸時,如果經過點\((\cfrac{7\pi}{6},-\cfrac{1}{2})\),則函數的值域就不再滿足最小值為\(-\cfrac{1}{2}\)
    故限制為\(\omega x-\cfrac{\pi}{6}\leqslant\cfrac{7\pi}{6}\)↩︎


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM