前言
涉及到\(y=Asin(\omega x+\phi)+k\)型中的參數\(\omega\),\(\phi\)的取值范圍或者其具體值時,常常需要做出其函數圖像來求解。
解析式含參ω
法1:用傳統方法求得\(f(x)\)的單增區間,令\(2k\pi-\cfrac{\pi}{2}\leq \omega x\leq 2k\pi-\cfrac{\pi}{2}(k\in Z)\),
解得\(\cfrac{2k\pi}{\omega}-\cfrac{\pi}{2\omega} \leq x \leq \cfrac{2k\pi}{\omega}+\cfrac{\pi}{2\omega}(k\in Z)\)
即\(f(x)\)的單增區間是\(\left[\cfrac{2k\pi}{\omega}-\cfrac{\pi}{2\omega},\cfrac{2k\pi}{\omega}+\cfrac{\pi}{2\omega}\right](k\in Z)\),
令\(k=0\),得到距離原點左右兩側最近的單調遞增區間是\(\left[-\cfrac{\pi}{2\omega},\cfrac{\pi}{2\omega}\right]\),
又由於\(f(x)\) 在區間\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上單調遞增,即 \(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}]\subseteq [-\cfrac{\pi}{2\omega},\cfrac{\pi}{2\omega}\right]\),
這樣就轉化為不等式組,即\(\begin{cases} -\cfrac{\pi}{2}\ge -\cfrac{\pi}{2\omega}\\ \cfrac{2\pi}{3}\leq \cfrac{\pi}{2\omega} \end{cases}\) ,
所以\(\omega\leq \cfrac{3}{4}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)。
法2:\(\because \omega>0,x\in \left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right] \therefore \omega x \in \left[-\cfrac{\pi\omega}{2},\cfrac{2\pi\omega}{3}\right]\),
又模板函數\(y=sinx\)在原點左右的單調遞增區間是\([-\cfrac{\pi}{2},\cfrac{\pi}{2}]\),將\(\omega x\)視為一個整體,
由\(f(x)\)在\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上單調遞增,故\(\left[-\cfrac{\pi\omega}{2},\cfrac{2\pi\omega}{3}\right]\subseteq \left[-\cfrac{\pi}{2},\cfrac{\pi}{2}\right]\)
\(\therefore \begin{cases} -\cfrac{\pi\omega}{2}\ge -\cfrac{\pi}{2} \\ \cfrac{2\pi\omega}{3}\leq \cfrac{\pi}{2} \end{cases}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)。
法3:\(\because f(x)\) 在區間\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)單調遞增,
故原點到\(-\cfrac{\pi}{2},\cfrac{2\pi}{3}\) 的距離不超過\(\cfrac{T}{4}\),\(\therefore \begin{cases} -\cfrac{\pi}{2} \leq \cfrac{T}{4} \\ \cfrac{2\pi}{3} \leq \cfrac{T}{4} \end{cases}\),
故\(T \ge \cfrac{8\pi}{3}\),即\(T=\cfrac{2\pi}{\omega} \ge \cfrac{8\pi}{3}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)。
法1:由於\(f(\cfrac{\pi}{4})=2\),\(f(\pi)=0\),做出適合題意的圖像,由圖像可知,
將給定區間的寬度轉化為用周期來刻畫,得到\(\cfrac{T}{4}+k\cdot \cfrac{T}{2}=\pi-\cfrac{\pi}{4}=\cfrac{3\pi}{4}\),\(k\in N^*\),
故\(T=\cfrac{3\pi}{1+2k}\),則\(\omega=\cfrac{2\pi}{T}=\cfrac{2(2k+1)}{3}\),\(k\in N^*\),
又由於\(f(x)\)在區間\((\cfrac{\pi}{4},\cfrac{\pi}{3})\)上單調,則\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\),[1]
則\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\),
故\(T\geqslant \cfrac{\pi}{6}\),故\(\omega=\cfrac{2\pi}{T}\leqslant 12\),
即\(\cfrac{2(2k+1)}{3}\leqslant 12\),則\(k\leqslant \cfrac{17}{2}\),\(k\in N\),
所以,符合條件的\(k=0\),\(1\),\(\cdots\),\(8\),
則符合題意的\(\omega\)的值共有\(9\)個;
法2:由於\(f(\cfrac{\pi}{4})=2\),\(f(\pi)=0\),則\(2sin(\omega\cdot \cfrac{\pi}{4}+\phi)=2\),\(2sin(\omega\cdot \pi+\phi)=0\),
即\(\left\{\begin{array}{l}{\omega\cdot \cfrac{\pi}{4}+\phi=2k_1\pi+\cfrac{\pi}{2},k_1\in Z①}\\{\omega\cdot \pi+\phi=k_2\pi,k_2\in Z②}\end{array}\right.\)
②-①得到,\(\cfrac{3\pi}{4}\cdot \omega=(k_2-2k_1)\pi-\cfrac{\pi}{2}\),
由於\(k_1\in Z\),\(k_2\in Z\),故\(k_2-2k_1\in Z\),令\(k_2-2k_1=k\),
則上式轉化為\(\cfrac{3\pi}{4}\cdot \omega=k\pi-\cfrac{\pi}{2}\),\(k\in Z\),
即\(\omega=\cfrac{2(2k-1)}{3}\),又由於\(\omega>0\),故\(k\in N^*\),
又由於\(f(x)\)在區間\((\cfrac{\pi}{4},\cfrac{\pi}{3})\)上單調,則\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\),
故\(T\geqslant \cfrac{\pi}{6}\),故\(\omega=\cfrac{2\pi}{T}\leqslant 12\),
即\(\cfrac{2(2k-1)}{3}\leqslant 12\),則\(k\leqslant \cfrac{19}{2}\),\(k\in N\),
故符合條件的\(k=1\),\(2\),\(\cdots\),\(9\),
則符合題意的\(\omega\)的值共有\(9\)個;
解后反思:本題目容易犯錯:當解得\(\omega\)的表達式后,用\(\omega\)的某一個值為切入點求得\(\phi\)的值,然后利用單調性求\(\omega\)的個數,這個思路是錯誤的;
分析:由於是涉及函數的值域,故我們一般是先求出整體自變量\(\omega x\)的取值范圍,故分類討論如下:
當\(\omega >0\)時,由\(-\cfrac{\pi}{3}\leq x\leq \cfrac{\pi}{4}\),故\(-\cfrac{\omega\pi}{3}\leq x\leq \cfrac{\omega\pi}{4}\),
由於函數的最小值是\(-2\),故需要滿足條件\(-\cfrac{\omega\pi}{3}\leq -\cfrac{\pi}{2}\),解得\(\omega \ge \cfrac{3}{2}\);
當\(\omega <0\)時,由\(-\cfrac{\pi}{3}\leq x\leq \cfrac{\pi}{4}\),故\(\cfrac{\omega\pi}{4}\leq x\leq -\cfrac{\omega\pi}{3}\),
由於函數的最小值是\(-2\),故需要滿足條件\(\cfrac{\omega\pi}{4}\leq -\cfrac{\pi}{2}\),解得\(\omega \leq -2\);
故\(\omega\)的取值范圍為\((-\infty,-2]\cup[\cfrac{3}{2},+\infty)\)。
分析:\(f(x)=sinx+acosx=\sqrt{a^2+1}sin(x+\phi),tan\phi =a\),
由題目可知,\(\cfrac{5\pi}{3}+\phi=k\pi+\cfrac{\pi}{2}\),故\(\phi=k\pi+\cfrac{\pi}{2}-\cfrac{5\pi}{3}=k\pi-\cfrac{7\pi}{6}\),
由於\(\phi\)的值只需要考慮其存在性,故從簡原則,
令\(k=1\),\(\phi=-\cfrac{\pi}{6}\),從而\(a=tan\phi=tan(-\cfrac{\pi}{6})=-\cfrac{\sqrt{3}}{3}\),
所以\(g(x)=-\cfrac{\sqrt{3}}{3}sinx+cosx=\cfrac{2\sqrt{3}}{3}sin(x+\theta),tan\theta=-\sqrt{3}\),
故\(g(x)_{max}=\cfrac{2\sqrt{3}}{3}\).
分析:有題目可知\(\omega =\cfrac{2\pi}{T}\),\(T\)越小(越大),則\(\omega\)越大(越小);
若題目中已知的兩個對稱中心是相鄰的,則此時\(T\)最大,
由\(\cfrac{T}{2}=\cfrac{\pi}{4}-\cfrac{\pi}{12}=\cfrac{\pi}{6}\),
故此時\(T_{max}=\cfrac{\pi}{3}\),故\(\omega_{min} =\cfrac{2\pi}{\cfrac{\pi}{3}}=6\).
分析:給定函數的周期是\(T=\cfrac{2\pi}{\omega}\),
向左平移\(\cfrac{\pi}{2}\)個單位長度,所得圖像與原圖像重合,
則平移長度必然等於周期的整數倍,
則有\(\cfrac{\pi}{2}=k\cdot \cfrac{2\pi}{\omega}(k\in Z)\),
即\(\omega=4k(k\in Z)\),故\(\omega\)的值不可能等於6。
法1:將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象向左平移\(\cfrac{\pi}{4}\)個單位長度后,
得到\(y=2sin[\omega (x+\cfrac{\pi}{4})-\cfrac{\pi}{4}]=2sin(\omega x+\cfrac{(\omega-1)\pi}{4})\);
將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象向右平移\(\cfrac{\pi}{4}\)個單位長度后,
得到\(y=2sin[\omega (x-\cfrac{\pi}{4})-\cfrac{\pi}{4}]=2sin(\omega x-\cfrac{(\omega+1)\pi}{4})\);
由於平移后的對稱軸重合,故自變量的整體差值為\(k\pi\),
故\(\omega x+\cfrac{(\omega-1)\pi}{4}=\omega x-\cfrac{(\omega+1)\pi}{4}+k\pi(k\in Z)\);
化簡得到\(\omega=2k(k\in Z)\),又\(\omega>0\);
故\(\omega_{min}=2\)。
法2:【暫作記錄,再思考】
將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象向左平移\(\cfrac{\pi}{4}\)個單位長度后,
由於周期的作用,其實平移的長度是\(\cfrac{\pi\omega}{4}\);
將函數\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的圖象向右平移\(\cfrac{\pi}{4}\)個單位長度后,
由於周期的作用,其實平移的長度也是\(\cfrac{\pi\omega}{4}\);
這樣的平移效果,相當於視原圖像不動,再將其圖像一次平移距離為\(\cfrac{2\pi\omega}{4}\);
由於平移后的對稱軸重合,故平移距離應該是\(k\pi\),即\(\cfrac{2\pi\omega}{4}=k\pi\);
化簡得到\(\omega=2k(k\in Z)\),又\(\omega>0\);
故\(\omega_{min}=2\)。
解后反思:
1、將周期函數的圖像平移后,若所得圖像與原圖像重合,則平移長度必然等於周期的整數倍,或者平移前后的自變量整體差值為\(k\cdot 2\pi(k\in Z)\);
比如,將\(y=sin(\omega x+\cfrac{\pi}{4})\),向左平移\(\cfrac{\pi}{3}\)個單位,所得圖像與原圖像重合,求正整數\(\omega\)的最小值;
思路1:由平移長度必然等於周期的整數倍得到,\(\cfrac{\pi}{3}=k\cdot \cfrac{2\pi}{\omega}\),
整理得到\(\omega=6k(\omega >0)\),故\(\omega_{min}=6\);
思路2:由平移前后的自變量整體差值為\(k\cdot 2\pi(k\in Z)\)得到,\(\omega(x+\cfrac{\pi}{3})+\cfrac{\pi}{4}=\omega x+\cfrac{\pi}{4}+2k\pi\),
整理得到\(\omega=6k(\omega >0)\),故\(\omega_{min}=6\);
2、將周期函數的圖像平移后,若所得圖像與原圖像對稱軸重合,則平移長度必然等於半周期的整數倍,或者平移前后的自變量整體差值為\(k\cdot \pi(k\in Z)\);
可仿上引例,自行舉例。
分析:\(f(x)=\cfrac{1-cos\omega x}{2}+\cfrac{1}{2}sin\omega x-\cfrac{1}{2}=\cfrac{1}{2}(sin\omega x-cos\omega x)\)
\(=\cfrac{\sqrt{2}}{2}sin(\omega x-\cfrac{\pi}{4})\),
法1:補集法,從數的角度入手分析,假設\(f(x)\)在區間\((\pi,2\pi)\)內有零點\(x_0\),使得\(f(x)=\cfrac{\sqrt{2}}{2}sin(\omega x_0-\cfrac{\pi}{4})=0\),
則\(\omega x_0-\cfrac{\pi}{4}=k\pi(k\in Z)\),即\(x_0=\cfrac{k\pi}{\omega}+\cfrac{\pi}{4\omega}\),
即\(x_0=\cfrac{(4k+1)\pi}{4\omega}\),又\(\pi<x_0<2\pi\),
則\(\pi<\cfrac{4k+1}{4\omega}<2\pi(k\in Z)\),即\(\left\{\begin{array}{l}{4\omega<4k+1}\\{8\omega>4k+1}\end{array}\right.\)
由於\(\omega>0\),故給\(k\)賦值從\(k=0\)開始,
①當\(k=0\)時,\(\left\{\begin{array}{l}{4\omega<1}\\{8\omega>1}\end{array}\right.\),即\(\cfrac{1}{8}<\omega<\cfrac{1}{4}\);
②當\(k=1\)時,\(\left\{\begin{array}{l}{4\omega<4+1}\\{8\omega>4+1}\end{array}\right.\),即\(\cfrac{5}{8}<\omega<\cfrac{5}{4}\);
③當\(k=2\)時,\(\left\{\begin{array}{l}{4\omega<8+1}\\{8\omega>8+1}\end{array}\right.\),即\(\cfrac{9}{8}<\omega<\cfrac{9}{4}\);
④當\(k=3\)時,\(\left\{\begin{array}{l}{4\omega<12+1}\\{8\omega>12+1}\end{array}\right.\),即\(\cfrac{13}{8}<\omega<\cfrac{13}{4}\);
⑤當\(k=4,\cdots\)時,\(\cdots\)
以上情形取並集,得到當函數\(f(x)\)在區間\((\pi,2\pi)\)內有零點\(x_0\)時,\(\omega\)的取值范圍是\((\cfrac{1}{8},\cfrac{1}{4})\cup(\cfrac{5}{8},+\infty)\),
故函數\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點時,\(\omega\)的取值范圍是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故選\(D\)。
法2:直接法,從數的角度入手分析,函數\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點,則\(sin(\omega x_0-\cfrac{\pi}{4})=0\)在區間\((\pi,2\pi)\)內無解,
則\(k\pi<\omega x-\cfrac{\pi}{4}<k\pi+\pi(k\in Z)\),即\(k\pi+\cfrac{\pi}{4}<\omega x<k\pi+\cfrac{5\pi}{4}(k\in Z)\),
則\(\cfrac{k\pi}{\omega}+\cfrac{\pi}{4\omega}<x_0<\cfrac{k\pi}{\omega}+\cfrac{5\pi}{4\omega}\)
即\(\cfrac{(4k+1)\pi}{4\omega}<x<\cfrac{(4k+5)\pi}{4\omega}\)恆成立,由於\(x\in (\pi,2\pi)\),
則\(\cfrac{(4k+1)\pi}{4\omega}\leq \pi\)且\(2\pi\leq \cfrac{(4k+5)\pi}{4\omega}\);
即\(\left\{\begin{array}{l}{4\omega\ge 4k+1}\\{8\omega\leq 4k+5}\end{array}\right.\)
①當\(k=-1\)時,\(4\omega\ge -3\)且\(8\omega \leq 1\),解得\(0<\omega\leq \cfrac{1}{8}\);
②當\(k=0\)時,\(4\omega\ge 1\)且\(8\omega \leq 5\),解得\(\cfrac{1}{4}\leq \omega\leq \cfrac{5}{8}\);
③當\(k=1\)時,\(4\omega\ge 5\)且\(8\omega \leq 9\),解得\(\cfrac{5}{4}\leq \omega\leq \cfrac{9}{8}\),實質為空集;
④當\(k=2\)時,\(4\omega\ge 9\)且\(8\omega \leq 13\),解得\(\cfrac{9}{4}\leq \omega\leq \cfrac{13}{8}\),實質為空集;
⑤當\(k=3,\cdots\)時,等等,解集都是空集;
綜上所述,函數\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點時,\(\omega\)的取值范圍是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故選\(D\)。
法3:高考解法,從數的角度入手分析,接上述解法,得到
\(sin(\omega x_0-\cfrac{\pi}{4})=0\)在區間\((\pi,2\pi)\)內無解,
即\(x=\cfrac{k\pi+\frac{\pi}{4}}{\omega}\not\in (\pi,2\pi)\),
則\(\omega \not\in (\cfrac{1}{8},\cfrac{1}{4})\cup (\cfrac{5}{8},\cfrac{5}{4})\cup (\cfrac{9}{8},\cfrac{9}{4})\cup\cdots = (\cfrac{1}{8},\cfrac{1}{4})\cup (\cfrac{5}{8},+\infty)\)
由於函數\(f(x)\)在區間\((\pi,2\pi)\)內沒有零點,\(\omega\)的取值范圍是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故選\(D\)。
法4:如下圖所示,從形的角度入手分析:
要使得函數在\((\pi,2\pi)\)內沒有零點,則有以下情形成立:
①\(2\pi\leq \cfrac{\pi}{4\omega}\),解得\(0<\omega\leq \cfrac{1}{8}\);
②\(\left\{ \begin{array}{l}{ \cfrac{\pi}{4\omega}\leq \pi }\\ {2\pi \leq \cfrac{5\pi}{4\omega}}\end{array}\right.\) ,解得$ \cfrac{1}{4}<\omega \leq \cfrac{5}{8}$;
③\(\left\{\begin{array}{l}{\cfrac{5\pi}{4\omega}\leq \pi}\\{2\pi\leq\cfrac{9\pi}{4\omega}} \end{array}\right.\),解得\(\cfrac{5}{4}<\omega\leq \cfrac{9}{8}\);即\(\omega\in \varnothing\);
④\(\left\{\begin{array}{l}{\cfrac{9\pi}{4\omega}\leq \pi}\\{2\pi\leq\cfrac{13\pi}{4\omega}} \end{array}\right.\),解得\(\cfrac{9}{4}<\omega\leq \cfrac{13}{8}\);即\(\omega\in \varnothing\);
⑤\(\cdots\),解得\(\omega\in \varnothing\);
綜上所述,\(\omega\)的取值范圍是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故選\(D\)。
分析:有題目可知,\(\left\{\begin{array}{l}{\cfrac{5}{4}\cdot T<2\pi ①}\\{2\pi\leq \cfrac{7}{4}\cdot T②}\end{array}\right.\),
注意由於是在開區間\((0,2\pi)\)上,故①沒有等號,而②有等號;
即\(\left\{\begin{array}{l}{\cfrac{5}{4}\cdot \cfrac{2\pi}{\omega}<2\pi }\\{2\pi\leq \cfrac{7}{4}\cdot \cfrac{2\pi}{\omega}}\end{array}\right.\),解得\(\cfrac{5}{4}<\omega\leq \cfrac{7}{4}\)。故選\(A\)。
分析:由\(f(\cfrac{2\pi}{3})=f(\cfrac{5\pi}{6})\)可知,函數\(f(x)\)有一條對稱軸為\(x=\cfrac{3\pi}{4}\),
且滿足\(\omega\cdot \cfrac{3\pi}{4}-\cfrac{\pi}{3}=2k\pi\),\(k\in Z\),即\(\omega =\cfrac{8}{3}k+\cfrac{4}{9}\);
又函數\(f(x)\)在\((\cfrac{2\pi}{3},\cfrac{5\pi}{6})\)上有最大值無最小值,
則\(T>\cfrac{5\pi}{6}-\cfrac{2\pi}{3}=\cfrac{\pi}{6}\),即\(\cfrac{2\pi}{\omega}>\cfrac{\pi}{6}\),
即\(\omega <12\),又由\(\omega =\cfrac{8}{3}k+\cfrac{4}{9}<12\),解得\(k\leq 4\),
故當\(k=4\)時,\(\omega_{max}=\cfrac{8}{3}\times 4+\cfrac{4}{9}=\cfrac{100}{9}\),故選\(D\)。
分析:將函數\(f(x)\)化簡,得到\(f(x)=sin(\omega x+\cfrac{\pi}{6})\),則平移得到\(g(x)=sin\omega x\),做出函數\(g(x)\)的簡圖如下,
由圖可知,若\(g(x)\)在區間\([-\cfrac{\pi}{4},\cfrac{3\pi}{4}]\)上單調遞增,且在\([0,2\pi]\)上有兩個零點,只需要滿足條件
\(\left\{\begin{array}{l}{\cfrac{3\pi}{4}\leq \cfrac{\pi}{2\omega}}\\{\cfrac{\pi}{\omega}\leq 2\pi }\end{array}\right.\),解得\(\cfrac{1}{2}\leq \omega \leq \cfrac{2}{3}\);即所求范圍為\([\cfrac{1}{2},\cfrac{2}{3}]\)
分析:先由\(R\)上的偶函數,得到\(\phi=\cfrac{\pi}{2}\),故函數轉化為\(f(x)=cos\cfrac{\pi}{\omega}x\),做出其函數簡圖,利用圖像得到,\(3\leq \omega\),即\(\omega_{min}=3\),故選\(C\)。
法1:由於\(sin\phi=\cfrac{\sqrt{3}}{2}\),則\(\phi=\cfrac{\pi}{3}\),或者\(\phi=\cfrac{2\pi}{3}\),
當\(\phi=\cfrac{\pi}{3}\)時,由於\((\cfrac{\pi}{6},0)\)為其對稱中心,則\(\cfrac{\pi}{6} \omega +\cfrac{\pi}{3}=k\pi(k\in Z)\),求得\(\omega =6k-2\),\(\omega_{min}=4\);
當\(\phi=\cfrac{2\pi}{3}\)時,由於\((\cfrac{\pi}{6},0)\)為其對稱中心,則\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),求得\(\omega =6k-4\),\(\omega_{min}=2\);
則\(\omega_{min}=2\),故選\(C\)。其實此方法還可以再優化,如下,
法2:利用相位法,由於函數\(f(x)\)可以看成先有函數\(y=sinx\)向左平移\(\phi\)的單位得到\(y=sin(x+\phi)\),然后再伸縮得到,
由於圖像的最高點在\(y\)軸的左側,故平移的距離一定大於\(\cfrac{\pi}{2}\),(或者說函數與\(y\)軸的交點在函數的單調遞減區間上,故由\(sin\phi=\cfrac{\sqrt{3}}{2}\),平移的距離一定大於\(\cfrac{\pi}{2}\),)
以及\(\phi\in (0,2\pi)\),只能得到\(\phi=\cfrac{2\pi}{3}\),又由於對稱中心為\((\cfrac{\pi}{6},0)\),
則\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),即\(\omega =6k-4\),從而解得\(\omega_{min}=2\);故選\(C\)。
法3:導數法,\(f'(x)=\omega cos(\omega x+\phi)\),由圖像可知,當\(x=0\)時,\(f'(x)<0\),即\(\omega cos\phi<0\),
又\(sin\phi=\cfrac{\sqrt{3}}{2}\),故\(\phi=\cfrac{2\pi}{3}\),又由於對稱中心為\((\cfrac{\pi}{6},0)\),
則\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),即\(\omega =6k-4\),從而解得\(\omega_{min}=2\);故選\(C\)。
分析:由題可知,\(\cfrac{\pi}{3}\omega +\cfrac{\pi}{6}=\cfrac{k\pi}{2}\),\(k\in Z\),則\(2\omega+1=3k\),逐項代入驗證選\(C\)。
解析:由題設可知,\(y=g(x)=2sin[\omega(x+\cfrac{\pi}{3\omega})-\cfrac{\pi}{3}]=2sin\omega x\)(\(\omega>0\)),
由於\(y=g(x)\)在區間\([-\cfrac{\pi}{6},\cfrac{\pi}{4}]\)上為增函數,且\(\omega>0\),
則有\(-\cfrac{\omega\pi}{6}\leqslant \omega x\leqslant \cfrac{\omega\pi}{4}\),且有\([-\cfrac{\omega\pi}{6},\cfrac{\omega\pi}{4}]\subseteq [-\cfrac{\pi}{2},\cfrac{\pi}{2}]\),
所以\(\left\{\begin{array}{l}{-\cfrac{\omega\pi}{6}\geqslant -\cfrac{\pi}{2}}\\{\cfrac{\omega\pi}{4}\leqslant \cfrac{\pi}{2}}\end{array}\right.\),解得\(\left\{\begin{array}{l}{\omega\leqslant 3}\\{\omega\leqslant 2}\end{array}\right.\),
則\(\omega \leqslant 2\),所以\(\omega\)的最大值為\(2\).
分析:由於\(x\in [0,\pi]\),\(\omega >0\),則\(\omega x-\cfrac{\pi}{6}\in [-\cfrac{\pi}{6},\omega x-\cfrac{\pi}{6}]\),
在以\(\omega x-\cfrac{\pi}{6}\)為橫軸做函數的圖像時,由於函數要有零點,則必須滿足\(\omega x-\cfrac{\pi}{6}\geqslant 0\)①;[2]
又由於值域\(M\in [-\cfrac{1}{2},+\infty)\),實質是值域\(M\in [-\cfrac{1}{2},1]\),則必須滿足\(\omega x-\cfrac{\pi}{6}\leqslant\cfrac{7\pi}{6}\)②;[3]
聯立①②,解得\(\omega \in [\cfrac{1}{6},\cfrac{4}{3}]\),故選\(C\)。
解析式含參φ
分析:由於\(f(x)=f(\cfrac{\pi}{2}-x)\),故函數的對稱軸為\(x=\cfrac{\pi}{4}\),
又由於\(f(x)_{max}=\sqrt{1+a^2}=2\),故\(a=\pm 3\),則\(f(x)=2\sin(2x+\phi\pm \cfrac{\pi}{3})\),
於是有\(2\times \cfrac{\pi}{4}+\phi\pm \cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}\),\(k\in Z\),
則\(\phi=k\pi\pm \cfrac{\pi}{3}\in (0,\pi)\),故\(\phi=\cfrac{\pi}{3}\)或\(\phi=\cfrac{2\pi}{3}\),故選\(C\).
分析:先變形得到\(f(x)=2cos(2x+\cfrac{\pi}{3})\),將其平移得到\(y=2cos[2(x+\phi)+\cfrac{\pi}{3}]\),
由其最低點坐標得到\(2\times(-\cfrac{\pi}{12})+2\phi+\cfrac{\pi}{3}=2k\pi+\pi\),
從而\(\phi=k\pi+\cfrac{5\pi}{12}\),令\(k=0\)解得\(\phi=\cfrac{5\pi}{12}\in (-\cfrac{\pi}{2},-\cfrac{\pi}{2})\),故\(f(\cfrac{5\pi}{12})=-\sqrt{3}\)。
反思:在求解\(\phi\)值時,還可以利用題目給定的零點來計算;還可以先轉化為\(f(x)=-2sin(2x-\cfrac{\pi}{6})\)來計算;
法1:由題目得到\(y=sin2x-\sqrt{3}cos2x=2sin(2x-\cfrac{\pi}{3})\),則將其向左平移\(\phi\)個單位長度后得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\),
由\(2k\pi+\cfrac{\pi}{2}\leq 2x+2\phi-\cfrac{\pi}{3}\leq 2k\pi+\cfrac{3\pi}{2}\),得到單減區間\([k\pi+\cfrac{5\pi}{12}-\phi,k\pi+\cfrac{11\pi}{12}-\phi]\),\(k\in Z\)
由於\(f(x)\)在\((\cfrac{\pi}{4},\cfrac{\pi}{2})\)上單調遞減,故必然滿足\((\cfrac{\pi}{4},\cfrac{\pi}{2})\subseteq [k\pi+\cfrac{5\pi}{12}-\phi,k\pi+\cfrac{11\pi}{12}-\phi]\)
由\(\left\{\begin{array}{l}{k\pi+\cfrac{5\pi}{12}-\phi\leq \cfrac{\pi}{4} }\\{\cfrac{\pi}{2}\leq k\pi+\cfrac{11\pi}{12}-\phi}\end{array}\right.\);解得\(k\pi+\cfrac{\pi}{6}\leq \phi \leq k\pi+\cfrac{5\pi}{12}(k\in Z)\),
令\(k=0\),即得到\(\cfrac{\pi}{6}\leq \phi \leq \cfrac{5\pi}{12}\),故選\(D\)。
法2:由題目得到\(y=sin2x-\sqrt{3}cos2x=2sin(2x-\cfrac{\pi}{3})\),則將其向左平移\(\phi\)個單位長度后得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\),
又由於模板函數\(y=sin2x\)的靠近原點的單調遞減區間為\([\cfrac{\pi}{4},\cfrac{3\pi}{4}]\),故將\(y=sin2x\)向左平移\(\phi-\cfrac{\pi}{6}\)即得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\),
故單調遞減區間相應的變化為\([\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6},\cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}]\),又題目給定\(f(x)\)在\((\cfrac{\pi}{4},\cfrac{\pi}{2})\)上單調遞減,
則\((\cfrac{\pi}{4},\cfrac{\pi}{2})\subseteq [\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6},\cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}]\),
由\(\left\{\begin{array}{l}{\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6}\leq \cfrac{\pi}{4} }\\{\cfrac{\pi}{2}\leq \cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}}\end{array}\right.\);得到\(\cfrac{\pi}{6}\leq \phi \leq \cfrac{5\pi}{12}\),故選\(D\)。
分析:將函數\(f(x)\)化簡為\(f(x)==\sqrt{5}(sinx\cdot \cfrac{2}{\sqrt{5}}+cosx\cdot \cfrac{1}{\sqrt{5}})=\sqrt{5}sin(x+\alpha)\),其中\(cos\alpha=\cfrac{2}{\sqrt{5}}\),\(sin\alpha=\cfrac{1}{\sqrt{5}}\),同理將函數\(g(x)\)化簡為\(g(x)=\sqrt{5}sin(x-\alpha)\),
由於函數\(f(x)\)向右平移\(\phi\)個單位長度,得到\(y=\sqrt{5}sin(x-\phi+\alpha)\),
則\(\sqrt{5}sin(x-\phi+\alpha)=\sqrt{5}sin(x-\alpha)\)對任意\(x\in R\)恆成立,
故有\(x-\phi+\alpha=2k\pi+x-\alpha\),即\(\phi=2\alpha-2k\pi\),\(k\in Z\),
故\(sin\phi=sin(2\alpha-2k\pi)=sin2\alpha=2sin\alpha\cdot cos\alpha=2\times\cfrac{2}{\sqrt{5}}\times\cfrac{1}{\sqrt{5}}=\cfrac{4}{5}\).
分析:\(f(x)=sin(2x+\cfrac{\pi}{6})\),\(g(x)=sin(2x+2\phi+\cfrac{\pi}{6})\),由於函數\(g(x)\)的圖像關於\(y\)軸對稱,則函數\(g(x)\)在\(x=0\)時取到最值,這樣將選項代入驗證,選\(A\)。
法1:驗證法,將函數\(y=sin6x\)的圖像向右平移\(\cfrac{\pi}{12}\)個單位,得到\(y=sin(6x-\cfrac{\pi}{2})\),驗證選項\(D\),由\(y=sin(6x+\cfrac{3\pi}{2})=sin(6x+2\pi-\cfrac{\pi}{2})=sin(6x-\cfrac{\pi}{2})\),故選項\(D\)正確,同理可以驗證排除其他的選項;
法2:計算賦值法,將函數\(y=sin6x\)的圖像向右平移\(\cfrac{\pi}{12}\)個單位,得到\(y=sin(6x-\cfrac{\pi}{2})\),
要使得其圖像和函數\(y=sin(6x-\phi)\)(\(-3\pi<\phi<-\pi\))的圖像重合,則需要\(6x-\cfrac{\pi}{2}+2k\pi=6x-\phi\),
即\(\phi=-2k\pi+\cfrac{\pi}{2}(k\in Z)\),令\(k=1\),得到\(\phi=-\cfrac{3\pi}{2}\in (-3\pi,-\pi)\),故選\(D\)。
分析:函數經過相應的變換得到,\(y=2sin(2x-2\phi+\cfrac{\pi}{3})+1\),由於函數圖像經過\((\cfrac{\pi}{8},1)\),
則有\(2\times \cfrac{\pi}{8}-2\phi+\cfrac{\pi}{3}=k\pi\),\(k\in Z\),變形整理得到,
\(\phi=\cfrac{k\pi}{2}+\cfrac{7\pi}{24}\),\(k\in Z\),令\(k=0\),得到\(\phi_{min}=\cfrac{7\pi}{24}\),故選\(D\).
給定區間含參
法1:從形上入手分析,正確、准確做出函數的圖像,是求解的先決條件。
由圖像能直觀的得到,要使得函數在\([0,\cfrac{x_0}{3}]\)和\([2x_0,\cfrac{7\pi}{6}]\)上都是單調遞增函數,
則必須同時滿足條件\(\left\{\begin{array}{l}{\cfrac{x_0}{3}\leq \cfrac{\pi}{6}}\\{2x_0\ge \cfrac{2\pi}{3}}\end{array}\right.\),解得\(\cfrac{\pi}{3}\leq x_0\leq \cfrac{\pi}{2}\),故選\(B\).
法2:從數上入手分析,用常規方法先求得給定函數的單調遞增區間,由\(2k\pi-\cfrac{\pi}{2}\leq 2x+\cfrac{\pi}{6}\leq 2k\pi+\cfrac{\pi}{2}\),
解得單調遞增區間為\([k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{6}]\),\(k\in Z\),
當\(k=0\)時,單增區間為\([-\cfrac{\pi}{3},\cfrac{\pi}{6}]\),
當\(k=1\)時,單增區間為\([\cfrac{2\pi}{3},\cfrac{7\pi}{6}]\),
又題目要求函數在\([0,\cfrac{x_0}{3}]\)和\([2x_0,\cfrac{7\pi}{6}]\)上都是單調遞增函數,
則必須同時滿足條件\(\left\{\begin{array}{l}{\cfrac{x_0}{3}\leq \cfrac{\pi}{6}}\\{2x_0\ge \cfrac{2\pi}{3}}\end{array}\right.\),解得\(\cfrac{\pi}{3}\leq x_0\leq \cfrac{\pi}{2}\),故選\(B\).
分析:\(f(x)=\sin x+\sqrt{3}\cos x=2(\cfrac{1}{2}\sin x+\cfrac{\sqrt{3}}{2}\cos x)=2\sin(x+\cfrac{\pi}{3})\),
在\([-m,m](m>0)\)上是增函數,將\(x+\cfrac{\pi}{3}\)視為整體,對比函數\(y=sinx\)的單調性可知,
則\(\left\{\begin{array}{l}{-m+\cfrac{\pi}{3}\geqslant -\cfrac{\pi}{2}}\\{m+\cfrac{\pi}{3}\leqslant \cfrac{\pi}{2}}\end{array}\right.\) 解得\(\left\{\begin{array}{l}{m\leqslant \cfrac{5\pi}{6}}\\{m\leqslant \cfrac{\pi}{6}}\end{array}\right.\)
則\(m\leqslant \cfrac{\pi}{6}\),故\(m\)的最大值為\(\cfrac{\pi}{6}\),故選\(C\).
由於\(f(\cfrac{\pi}{4})\)達到極值或最值,故題目雖說給定了函數單調[可能包含單調遞增或單調遞減兩種情形],其實只能是單調遞減,
又由於單調區間的最大寬度等於半周期,故給定的單調區間的寬度必然小於或等於半周期; ↩︎只有確保圖像經過原點(包含原點),才能保證函數至少有一個零點;用數的形式限制為\(\omega x-\cfrac{\pi}{6}\geqslant 0\); ↩︎
當圖像從左往右延伸時,如果經過點\((\cfrac{7\pi}{6},-\cfrac{1}{2})\),則函數的值域就不再滿足最小值為\(-\cfrac{1}{2}\),
故限制為\(\omega x-\cfrac{\pi}{6}\leqslant\cfrac{7\pi}{6}\); ↩︎