https://blog.csdn.net/shwan_ma/article/details/78879620
一般來說,打印tensorflow變量的函數有兩個:
tf.trainable_variables () 和 tf.all_variables()
不同的是:
tf.trainable_variables () 指的是需要訓練的變量
tf.all_variables() 指的是所有變量
一般而言,我們更關注需要訓練的訓練變量:
值得注意的是,在輸出變量名時,要對整個graph進行初始化
一、打印需要訓練的變量名稱
variable_names = [v.name for v in tf.trainable_variables()]
print(variable_names)
1
2
二、打印需要訓練的變量名稱和變量值
variable_names = [v.name for v in tf.trainable_variables()]
values = sess.run(variable_names)
for k,v in zip(variable_names, values):
print("Variable: ", k)
print("Shape: ", v.shape)
print(v)
1
2
3
4
5
6
這里提供一個函數,打印變量名稱,shape及其變量數目
def print_num_of_total_parameters(output_detail=False, output_to_logging=False):
total_parameters = 0
parameters_string = ""
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
total_parameters += variable_parameters
if len(shape) == 1:
parameters_string += ("%s %d, " % (variable.name, variable_parameters))
else:
parameters_string += ("%s %s=%d, " % (variable.name, str(shape), variable_parameters))
if output_to_logging:
if output_detail:
logging.info(parameters_string)
logging.info("Total %d variables, %s params" % (len(tf.trainable_variables()), "{:,}".format(total_parameters)))
else:
if output_detail:
print(parameters_string)
print("Total %d variables, %s params" % (len(tf.trainable_variables()), "{:,}".format(total_parameters)))