tf.trainable_variables方法


import tensorflow as tf

v1 = tf.get_variable('v1', shape=[1])
v2 = tf.get_variable('v2', shape=[1], trainable=False)

with tf.variable_scope('scope1'):
    s1 = tf.get_variable('s1', shape=[1], initializer=tf.random_normal_initializer())
g1=tf.Graph()
g2=tf.Graph()

with g1.as_default():
    g1v1 = tf.get_variable('g1v1', shape=[1])
    g1v2 = tf.get_variable('g1v2', shape=[1], trainable=False)
    g1vs = tf.trainable_variables()
    # [<tf.Variable 'g1v1:0' shape=(1,) dtype=float32_ref>]
    print(g1vs)

with g2.as_default():
    g2v1 = tf.get_variable('g2v1', shape=[1])
    g2v2 = tf.get_variable('g2v2', shape=[1], trainable=False)
    g2vs = tf.trainable_variables()
    # [<tf.Variable 'g2v1:0' shape=(1,) dtype=float32_ref>]
    print(g2vs)

with tf.Session() as sess:
    vs = tf.trainable_variables()
    # [<tf.Variable 'v1:0' shape=(1,) dtype=float32_ref>, <tf.Variable 'scope1/s1:0' shape=(1,) dtype=float32_ref>]
    print(vs)

tf.trainable_variables 返回所有 當前計算圖中 在獲取變量時未標記 trainable=False 的變量集合

從1.4版本開始可以支持傳入scope,來獲取指定scope中的變量集合


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM